메뉴 건너뛰기




Volumn 4701 LNAI, Issue , 2007, Pages 298-309

Bayesian inference for sparse generalized linear models

Author keywords

[No Author keywords available]

Indexed keywords

APPROXIMATION THEORY; INFERENCE ENGINES; LAPLACE TRANSFORMS; LINEAR PROGRAMMING; MATHEMATICAL MODELS; PARAMETER ESTIMATION;

EID: 38049179024     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/978-3-540-74958-5_29     Document Type: Conference Paper
Times cited : (19)

References (23)
  • 3
    • 0000324169 scopus 로고
    • Adaptive rejection sampling for Gibbs sampling
    • Gilks, W.R., Wild, P.: Adaptive rejection sampling for Gibbs sampling. Applied Statistics 41(2), 337-348 (1992)
    • (1992) Applied Statistics , vol.41 , Issue.2 , pp. 337-348
    • Gilks, W.R.1    Wild, P.2
  • 4
    • 0043069766 scopus 로고    scopus 로고
    • Organization of cell assemblies in the hippocampus
    • Harris, K., Csicsvari, J., Hirase, H., Dragoi, G., Buzsaki, C.: Organization of cell assemblies in the hippocampus. Nature 424(6948), 552-556 (2003)
    • (2003) Nature , vol.424 , Issue.6948 , pp. 552-556
    • Harris, K.1    Csicsvari, J.2    Hirase, H.3    Dragoi, G.4    Buzsaki, C.5
  • 6
    • 33947651485 scopus 로고    scopus 로고
    • Divergence measures and message passing
    • Technical Report MSR-TR-2005-173, Microsoft Research, Cambridge
    • Minka, T.: Divergence measures and message passing. Technical Report MSR-TR-2005-173, Microsoft Research, Cambridge (2005)
    • (2005)
    • Minka, T.1
  • 7
    • 0011965365 scopus 로고    scopus 로고
    • Expectation propagation for approximate Bayesian inference
    • Minka, T.: Expectation propagation for approximate Bayesian inference. Uncertainty in AI 17 (2001)
    • (2001) Uncertainty in AI , vol.17
    • Minka, T.1
  • 8
    • 77956943618 scopus 로고    scopus 로고
    • Expectation propagation for continuous time Bayesian networks
    • Nodelman, U., Koller, D., Shelton, C.: Expectation propagation for continuous time Bayesian networks. Uncertainty in AI 21, 431-440 (2005)
    • (2005) Uncertainty in AI , vol.21 , pp. 431-440
    • Nodelman, U.1    Koller, D.2    Shelton, C.3
  • 9
    • 0034320350 scopus 로고    scopus 로고
    • Opper, M., Winther, O.: Gaussian processes for classification: Mean field algorithms. N. Comp. 12(11), 2655-2684 (2000)
    • Opper, M., Winther, O.: Gaussian processes for classification: Mean field algorithms. N. Comp. 12(11), 2655-2684 (2000)
  • 10
    • 9744274025 scopus 로고    scopus 로고
    • Maximum likelihood estimation of cascade point-process neural encoding models
    • Paninski, L.: Maximum likelihood estimation of cascade point-process neural encoding models. Network: Computation in Neural Systems 15, 243-262 (2004)
    • (2004) Network: Computation in Neural Systems , vol.15 , pp. 243-262
    • Paninski, L.1
  • 11
    • 38049118178 scopus 로고    scopus 로고
    • The Bayesian Lasso
    • Technical report, University of Florida
    • Park, T., Casella, G.: The Bayesian Lasso. Technical report, University of Florida (2005)
    • (2005)
    • Park, T.1    Casella, G.2
  • 12
    • 14344253847 scopus 로고    scopus 로고
    • Predictive automatic relevance determination by expectation propagation
    • Qi, Y., Minka, T., Picard, R., Ghahramani, Z.: Predictive automatic relevance determination by expectation propagation. In: Proceedings of ICML 21 (2004)
    • (2004) Proceedings of ICML , vol.21
    • Qi, Y.1    Minka, T.2    Picard, R.3    Ghahramani, Z.4
  • 13
    • 84862633948 scopus 로고    scopus 로고
    • Poisson networks: A model for structured point processes
    • Rajaram, S., Graepel, T., Herbrich, R.: Poisson networks: A model for structured point processes. AI and Statistics 10 (2005)
    • (2005) AI and Statistics , vol.10
    • Rajaram, S.1    Graepel, T.2    Herbrich, R.3
  • 15
    • 38049118177 scopus 로고    scopus 로고
    • Seeger, M.: Expectation propagation for exponential families. Technical report, University of California at Berkeley (2005) See http://www.kyb. tuebingen.mpg.de/bs/people/seeger
    • Seeger, M.: Expectation propagation for exponential families. Technical report, University of California at Berkeley (2005) See http://www.kyb. tuebingen.mpg.de/bs/people/seeger
  • 16
    • 38049145045 scopus 로고    scopus 로고
    • Bayesian inference and optimal design in the sparse linear model
    • Seeger, M., Steinke, F., Tsuda, K.: Bayesian inference and optimal design in the sparse linear model. AI and Statistics 11 (2007)
    • (2007) AI and Statistics , vol.11
    • Seeger, M.1    Steinke, F.2    Tsuda, K.3
  • 17
    • 2542438416 scopus 로고    scopus 로고
    • Characterization of neural responses with stochastic stimuli
    • Gazzaniga, M, ed, 3rd edn, MIT Press, Cambridge
    • Simoncelli, E., Paninski, L., Pillow, J., Schwartz, O.: Characterization of neural responses with stochastic stimuli. In: Gazzaniga, M. (ed.) The Cognitive Neurosciences, 3rd edn., MIT Press, Cambridge (2004)
    • (2004) The Cognitive Neurosciences
    • Simoncelli, E.1    Paninski, L.2    Pillow, J.3    Schwartz, O.4
  • 19
    • 0001287271 scopus 로고    scopus 로고
    • Regression shrinkage and selection via the Lasso
    • Tibshirani, R.: Regression shrinkage and selection via the Lasso. J. Roy. Stat. Soc. B 58, 267-288 (1996)
    • (1996) J. Roy. Stat. Soc. B , vol.58 , pp. 267-288
    • Tibshirani, R.1
  • 20
    • 0001224048 scopus 로고    scopus 로고
    • Sparse Bayesian learning and the relevance vector machine
    • Tipping, M.: Sparse Bayesian learning and the relevance vector machine. J. M. Learn. Res. 1, 211-244 (2001)
    • (2001) J. M. Learn. Res , vol.1 , pp. 211-244
    • Tipping, M.1
  • 22
    • 33748908922 scopus 로고    scopus 로고
    • Perspectives on sparse Bayesian learning
    • Wipf, D., Palmer, J., Rao, B.: Perspectives on sparse Bayesian learning. In: Advances in NIPS 16 (2004)
    • (2004) Advances in NIPS , vol.16
    • Wipf, D.1    Palmer, J.2    Rao, B.3
  • 23
    • 27644575965 scopus 로고    scopus 로고
    • The spatial filtering properties of local edge detectors and brisk-sustained retinal ganglion cells
    • Zeck, G., Xiao, Q., Masland, R.: The spatial filtering properties of local edge detectors and brisk-sustained retinal ganglion cells. Eur J Neurosci 22(8), 2016-2026 (2005)
    • (2005) Eur J Neurosci , vol.22 , Issue.8 , pp. 2016-2026
    • Zeck, G.1    Xiao, Q.2    Masland, R.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.