메뉴 건너뛰기




Volumn 25, Issue 4, 2010, Pages 365-395

On rough sets, their recent extensions and applications

Author keywords

[No Author keywords available]

Indexed keywords

APPLICATION DOMAINS; PROBLEM DOMAIN; REAL-WORLD PROBLEM; ROUGH SET;

EID: 79952943396     PISSN: 02698889     EISSN: 14698005     Source Type: Journal    
DOI: 10.1017/S0269888910000263     Document Type: Article
Times cited : (13)

References (161)
  • 2
    • 0142025113 scopus 로고    scopus 로고
    • An adaptive rough fuzzy single pass algorithm for clustering large data sets
    • Asharaf, A. & Murty, M. N. 2004. An adaptive rough fuzzy single pass algorithm for clustering large data sets. Pattern Recognition 36(12), 3015-3018.
    • (2004) Pattern Recognition , vol.36 , Issue.12 , pp. 3015-3018
    • Asharaf, A.1    Murty, M.N.2
  • 3
    • 0031185330 scopus 로고    scopus 로고
    • A mass assignment based ID3 algorithm for decision tree induction
    • Baldwin, J. F., Lawry, J. & Martin, T. P. 1997. A mass assignment based ID3 algorithm for decision tree induction. International Journal of Intelligent Systems 12(7), 523-552. (Pubitemid 127608081)
    • (1997) International Journal of Intelligent Systems , vol.12 , Issue.7 , pp. 523-552
    • Baldwin, J.F.1    Lawry, J.2    Martin, T.P.3
  • 5
    • 0038404485 scopus 로고    scopus 로고
    • Rough set algorithms in classification problem
    • Polkowski, L., Tsumoto, S. & Lin, T. Y. eds. Physica-Verlag
    • Bazan, J., Nguyen, H. S., Nguyen, S. H., Synak, P. & Wroblewski, J. 2000. Rough set algorithms in classification problem. In Rough Set Methods and Applications, Polkowski, L., Tsumoto, S. & Lin, T. Y. (eds). Physica-Verlag, 49-88.
    • (2000) Rough Set Methods and Applications , pp. 49-88
    • Bazan, J.1    Nguyen, H.S.2    Nguyen, S.H.3    Synak, P.4    Wroblewski, J.5
  • 8
    • 0035502119 scopus 로고    scopus 로고
    • Reducts within the variable precision rough sets model: A further investigation
    • Beynon, M. J. 2001. Reducts within the variable precision rough sets model: a further investigation. European Journal of Operational Research 134(3), 592-605.
    • (2001) European Journal of Operational Research , vol.134 , Issue.3 , pp. 592-605
    • Beynon, M.J.1
  • 10
    • 11144295810 scopus 로고    scopus 로고
    • FRID: Fuzzy-rough interactive dichotomizers
    • 2004 IEEE International Conference on Fuzzy Systems - Proceedings
    • Bhatt, R. B. & Gopal, M. 2004. FRID: fuzzy-rough interactive dichotomizers. In Proceeding of the 2004 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE'04), Budapest, 1337-1342. (Pubitemid 40027891)
    • (2004) IEEE International Conference on Fuzzy Systems , vol.3 , pp. 1337-1342
    • Bhatt, R.B.1    Gopal, M.2
  • 15
    • 33646026682 scopus 로고    scopus 로고
    • Rough approximations on a complete completely distributive lattice with applications to generalized rough sets
    • Chen, D., Zhang, W. X., Yeung, D. & Tsang, E. C. C. 2006. Rough approximations on a complete completely distributive lattice with applications to generalized rough sets. Information Sciences 176(13), 1829-1848.
    • (2006) Information Sciences , vol.176 , Issue.13 , pp. 1829-1848
    • Chen, D.1    Zhang, W.X.2    Yeung, D.3    Tsang, E.C.C.4
  • 18
    • 0242322799 scopus 로고    scopus 로고
    • Rough set-aided keyword reduction for text categorization
    • DOI 10.1080/088395101753210773
    • Chouchoulas, A. & Shen, Q. 2001. Rough set-aided keyword reduction for text categorisation. Applied Artificial Intelligence 15(9), 843-873. (Pubitemid 33701177)
    • (2001) Applied Artificial Intelligence , vol.15 , Issue.9 , pp. 843-873
    • Chouchoulas, A.1    Shen, Q.2
  • 22
    • 0013326060 scopus 로고    scopus 로고
    • Feature selection for classification
    • Dash, M. & Liu, H. 1997. Feature selection for classification. Intelligent Data Analysis 1(3), 131-156.
    • (1997) Intelligent Data Analysis , vol.1 , Issue.3 , pp. 131-156
    • Dash, M.1    Liu, H.2
  • 30
    • 0015644825 scopus 로고
    • A fuzzy relative of the ISODATA process and its use in detecting compact well-separated clusters
    • Dunn, J. C. 1973. A fuzzy relative of the ISODATA process and its use in detecting compact well-separated clusters. Journal of Cybernetics 3, 32-57.
    • (1973) Journal of Cybernetics , vol.3 , pp. 32-57
    • Dunn, J.C.1
  • 32
    • 0035254283 scopus 로고    scopus 로고
    • Rough sets theory for multicriteria decision analysis
    • DOI 10.1016/S0377-2217(00)00167-3
    • Greco, S., Matarazzo, B. & Slowiński, R. 2001. Rough sets theory for multicriteria decision analysis. European Journal of Operational Research 129(1), 1-47. (Pubitemid 32071221)
    • (2001) European Journal of Operational Research , vol.129 , Issue.1 , pp. 1-47
    • Greco, S.1    Matarazzo, B.2    Slowinski, R.3
  • 33
    • 0029306899 scopus 로고
    • The usefulness of machine learning approach to knowledge acquisition
    • Grzymala-Busse, D. M. & Grzymala-Busse, J. W. 1995. The usefulness of machine learning approach to knowledge acquisition. Computational Intelligence 11, 268-279.
    • (1995) Computational Intelligence , vol.11 , pp. 268-279
    • Grzymala-Busse, D.M.1    Grzymala-Busse, J.W.2
  • 39
    • 3042712702 scopus 로고    scopus 로고
    • Rough clustering and its application to medicine
    • Hirano, S. & Tsumoto, S. 2000. Rough clustering and its application to medicine. Journal of Information Sciences 124, 125-137.
    • (2000) Journal of Information Sciences , vol.124 , pp. 125-137
    • Hirano, S.1    Tsumoto, S.2
  • 40
    • 7044273970 scopus 로고    scopus 로고
    • Indiscernibility-Based Clustering: Rough Clustering
    • Fuzzy Sets and Systems - IFSA 2003
    • Hirano, S. & Tsumoto, S. 2003. Indiscernibility-based clustering: rough clustering. In International Fuzzy Systems Association World Congress, Lecture Notes in Computer Science 2715, 378-386. Springer-Verlag. (Pubitemid 36892419)
    • (2003) LECTURE NOTES IN COMPUTER SCIENCE , Issue.2715 , pp. 378-386
    • Hirano, S.1    Tsumoto, S.2
  • 41
    • 0036471411 scopus 로고    scopus 로고
    • Nonhierarchical document clustering based on a tolerance rough set model
    • DOI 10.1002/int.10016, A Rough Sets Approach to Knowledge Discovery
    • Ho, B. & Nguyen, N. B. 2002. Nonhierarchical document clustering based on a tolerance rough set model. International Journal of Intelligent Systems 17(2), 199-212. (Pubitemid 34167417)
    • (2002) International Journal of Intelligent Systems , vol.17 , Issue.2 , pp. 199-212
    • Ho, T.B.1    Nguyen, N.B.2
  • 42
    • 33748851854 scopus 로고    scopus 로고
    • Documents clustering using tolerance rough set model and its application to information retrieval
    • P. S., Segovia, J., Karprzyk, J., & Zadeh, L. A. eds. Physica-Verlag, Heidelberg
    • Ho, T. B., Kawasaki, S. & Nguyen, N. B. 2006. Documents clustering using tolerance rough set model and its application to information retrieval. In Studies In Fuzziness and Soft Computing, Intelligent Exploration of the Web, Szczepaniak, P. S., Segovia, J., Karprzyk, J., & Zadeh, L. A. (eds). Physica-Verlag, Heidelberg, 181-196.
    • (2006) Studies in Fuzziness and Soft Computing, Intelligent Exploration of the Web, Szczepaniak , pp. 181-196
    • Ho, T.B.1    Kawasaki, S.2    Nguyen, N.B.3
  • 46
    • 32644440353 scopus 로고    scopus 로고
    • Information-preserving hybrid data reduction based on fuzzy-rough techniques
    • DOI 10.1016/j.patrec.2005.09.004, PII S0167865505002576
    • Hu, Q., Yu, D. & Xie, Z. 2006. Information-preserving hybrid data reduction based on fuzzy-rough techniques. Pattern Recognition Letters 27(5), 414-423. (Pubitemid 43242919)
    • (2006) Pattern Recognition Letters , vol.27 , Issue.5 , pp. 414-423
    • Hu, Q.1    Yu, D.2    Xie, Z.3
  • 48
    • 34547699509 scopus 로고    scopus 로고
    • Hybrid attribute reduction based on a novel fuzzy-rough model and information granulation
    • DOI 10.1016/j.patcog.2007.03.017, PII S0031320307001379
    • Hu, Q., Xie, Z. & Yu, D. 2007b. Hybrid attribute reduction based on a novel fuzzy-rough model and information granulation. Pattern Recognition 40, 3509-3521. (Pubitemid 47223272)
    • (2007) Pattern Recognition , vol.40 , Issue.12 , pp. 3509-3521
    • Hu, Q.1    Xie, Z.2    Yu, D.3
  • 49
    • 58249088810 scopus 로고    scopus 로고
    • Measures based on upper approximations of rough sets for analysis of attribute importance and interaction
    • Inuiguchi, M. & Tsurumi, M. 2006. Measures based on upper approximations of rough sets for analysis of attribute importance and interaction. International Journal of Innovative Computing Information and Control 2(1), 1-12.
    • (2006) International Journal of Innovative Computing Information and Control , vol.2 , Issue.1 , pp. 1-12
    • Inuiguchi, M.1    Tsurumi, M.2
  • 51
    • 10944249572 scopus 로고    scopus 로고
    • Semantics-preserving dimensionality reduction: Rough and fuzzy-rough-based approaches
    • DOI 10.1109/TKDE.2004.96
    • Jensen, R. & Shen, Q. 2004a. Semantics-preserving dimensionality reduction: rough and fuzzy-rough based approaches. IEEE Transactions on Knowledge and Data Engineering 16(12), 1457-1471. (Pubitemid 40010921)
    • (2004) IEEE Transactions on Knowledge and Data Engineering , vol.16 , Issue.12 , pp. 1457-1471
    • Jensen, R.1    Shen, Q.2
  • 52
    • 0348170835 scopus 로고    scopus 로고
    • Fuzzy-rough attribute reduction with application to web categorization
    • Jensen, R. & Shen, Q. 2004b. Fuzzy-rough attribute reduction with application to web categorization. Fuzzy Sets and Systems 141(3), 469-485.
    • (2004) Fuzzy Sets and Systems , vol.141 , Issue.3 , pp. 469-485
    • Jensen, R.1    Shen, Q.2
  • 53
    • 9644262464 scopus 로고    scopus 로고
    • Fuzzy-rough data reduction with ant colony optimization
    • Jensen, R. & Shen, Q. 2005. Fuzzy-rough data reduction with ant colony optimization. Fuzzy Sets and Systems 149(1), 5-20.
    • (2005) Fuzzy Sets and Systems , vol.149 , Issue.1 , pp. 5-20
    • Jensen, R.1    Shen, Q.2
  • 54
    • 33947421283 scopus 로고    scopus 로고
    • Fuzzy-rough sets assisted attribute selection
    • DOI 10.1109/TFUZZ.2006.889761, Extensions of Type-1 Fuzzy Sets
    • Jensen, R. & Shen, Q. 2007. Fuzzy-rough sets assisted attribute selection. IEEE Transactions on Fuzzy Systems 15(1), 73-89. (Pubitemid 46444305)
    • (2007) IEEE Transactions on Fuzzy Systems , vol.15 , Issue.1 , pp. 73-89
    • Jensen, R.1    Shen, Q.2
  • 57
    • 68849126540 scopus 로고    scopus 로고
    • New approaches to fuzzy-rough feature selection
    • Jensen, R. & Shen, Q. 2009. New approaches to fuzzy-rough feature selection. IEEE Transactions on Fuzzy Systems 17(4), 824-838.
    • (2009) IEEE Transactions on Fuzzy Systems , vol.17 , Issue.4 , pp. 824-838
    • Jensen, R.1    Shen, Q.2
  • 59
    • 84974659934 scopus 로고    scopus 로고
    • Hierarchical document clustering based on tolerance rough set model
    • Lyon, France September 13-16, 2000, Zighed, D. A., Komorowski, H. J. & Zytkow, J. M. eds. Lecture Notes in Computer Science, Springer
    • Kawasaki, S., Nguyen, N. B. & Ho, T. B. 2000. Hierarchical document clustering based on tolerance rough set model. In Principles of Data Mining and Knowledge Discovery, 4th European Conference (PKDD 2000), Lyon, France (September 13-16, 2000), Zighed, D. A., Komorowski, H. J. & Zytkow, J. M. (eds). Lecture Notes in Computer Science 1910, 13-27. Springer.
    • (2000) Principles of Data Mining and Knowledge Discovery, 4th European Conference (PKDD 2000) , vol.1910 , pp. 13-27
    • Kawasaki, S.1    Nguyen, N.B.2    Ho, T.B.3
  • 60
    • 43249111682 scopus 로고    scopus 로고
    • An efficient ant colony optimization approach to attribute reduction in rough set theory
    • Ke, L., Feng, Z. & Ren, Z. 2008. An efficient ant colony optimization approach to attribute reduction in rough set theory. Pattern Recognition Letters 29, 1351-1357.
    • (2008) Pattern Recognition Letters , vol.29 , pp. 1351-1357
    • Ke, L.1    Feng, Z.2    Ren, Z.3
  • 66
    • 34447299135 scopus 로고    scopus 로고
    • Rough clustering of sequential data
    • DOI 10.1016/j.datak.2007.01.003, PII S0169023X07000055
    • Kumar, P., Krishna, P. R., Bapi, R. S. & De, S. K. 2007. Rough clustering of sequential data. Data & Knowledge Engineering 63(2), 183-199. (Pubitemid 47053939)
    • (2007) Data and Knowledge Engineering , vol.63 , Issue.2 , pp. 183-199
    • Kumar, P.1    Krishna, P.R.2    Bapi, Raju.S.3    De, S.K.4
  • 67
    • 2042476687 scopus 로고    scopus 로고
    • Mining classification rules using rough sets and neural networks
    • Li, R. & Wang, Z.-O. 2004. Mining classification rules using rough sets and neural networks. European Journal of Operational Research 157, 439-448.
    • (2004) European Journal of Operational Research , vol.157 , pp. 439-448
    • Li, R.1    Wang, Z.-O.2
  • 71
    • 0035415091 scopus 로고    scopus 로고
    • Applications of rough genetic algorithms
    • Lingras, P. & Davies, C. 2001. Applications of rough genetic algorithms. Computational Intelligence 17(3), 435-445. (Pubitemid 32934015)
    • (2001) Computational Intelligence , vol.17 , Issue.3 , pp. 435-445
    • Lingras, P.1    Davies, C.2
  • 72
  • 73
    • 11144312947 scopus 로고    scopus 로고
    • Interval set clustering of web users using modified Kohonen self-organizing maps based on the properties of rough sets
    • Lingras, P., Hogo, M. & Snorek, M. 2004. Interval set clustering of web users using modified Kohonen self-organizing maps based on the properties of rough sets. Web Intelligence and Agent Systems 2(3), 217-230.
    • (2004) Web Intelligence and Agent Systems , vol.2 , Issue.3 , pp. 217-230
    • Lingras, P.1    Hogo, M.2    Snorek, M.3
  • 74
    • 0036027422 scopus 로고    scopus 로고
    • Rule extraction from expert heuristics: A comparative study of rough sets with neural networks and ID3
    • DOI 10.1016/S0377-2217(01)00062-5, PII S0377221701000625
    • Mak, B. & Munakata, T. 2002. Rule extraction from expert heuristics: a comparative study of rough sets with neural networks and ID3. European Journal of Operational Research 136, 212-229. (Pubitemid 33018813)
    • (2002) European Journal of Operational Research , vol.136 , Issue.1 , pp. 212-229
    • Mak, B.1    Munakata, T.2
  • 75
    • 57049161875 scopus 로고    scopus 로고
    • Standard and fuzzy rough entropy clustering algorithms in image segmentation
    • Malyszko, D. & Stepaniuk, J. 2008. Standard and fuzzy rough entropy clustering algorithms in image segmentation. Rough Sets and Current Trends in Computing 5306, 409-418.
    • (2008) Rough Sets and Current Trends in Computing , vol.5306 , pp. 409-418
    • Malyszko, D.1    Stepaniuk, J.2
  • 76
    • 76749110434 scopus 로고    scopus 로고
    • A distance measure approach to exploring the rough set boundary region for attribute reduction
    • MacParthaláin, N., Shen, Q. & Jensen, R. 2010. A distance measure approach to exploring the rough set boundary region for attribute reduction. IEEE Transactions on Knowledge and Data Engineering 22(3), 306-317.
    • (2010) IEEE Transactions on Knowledge and Data Engineering , vol.22 , Issue.3 , pp. 306-317
    • MacParthaláin, N.1    Shen, Q.2    Jensen, R.3
  • 78
    • 58249084603 scopus 로고    scopus 로고
    • Exploring the boundary region of tolerance rough sets for feature selection
    • MacParthalain, N. & Shen, Q. 2009. Exploring the boundary region of tolerance rough sets for feature selection. Pattern Recognition 42(5), 655-667.
    • (2009) Pattern Recognition , vol.42 , Issue.5 , pp. 655-667
    • MacParthalain, N.1    Shen, Q.2
  • 79
    • 0037117685 scopus 로고    scopus 로고
    • Genetic programming and rough sets: A hybrid approach to bankruptcy classification
    • DOI 10.1016/S0377-2217(01)00130-8, PII S0377221701001308
    • McKee, T. & Lensberg, T. 2002. Genetic programming and rough sets: a hybrid approach to bankruptcy classification. European Journal of Operational Research 140(2), 436-451. (Pubitemid 34065108)
    • (2002) European Journal of Operational Research , vol.138 , Issue.2 , pp. 436-451
    • McKee, T.E.1    Lensberg, T.2
  • 80
    • 1342328031 scopus 로고    scopus 로고
    • An axiomatic characterization of a fuzzy generalization of rough sets
    • Mi, J. S. & Zhang, W. X. 2004. An axiomatic characterization of a fuzzy generalization of rough sets. Information Sciences 160 (1-4), 235-249.
    • (2004) Information Sciences , vol.160 , Issue.1-4 , pp. 235-249
    • Mi, J.S.1    Zhang, W.X.2
  • 81
    • 9444230595 scopus 로고    scopus 로고
    • Fuzzy Implication Operators in Variable Precision Fuzzy Rough Sets Model
    • Artificial Intelligence and Soft Computing - ICAISC 2004
    • Mieszkowicz-Rolka, A. & Rolka, L. 2004. Fuzzy implication operators in variable precision fuzzy rough sets model. Lecture Notes in Computer Science (LNCS) 3070, Springer, Heidelberg, 498-503. (Pubitemid 38835870)
    • (2004) LECTURE NOTES IN COMPUTER SCIENCE , Issue.3070 , pp. 498-503
    • Mieszkowicz-Rolka, A.1    Rolka, L.2
  • 83
    • 0033932032 scopus 로고    scopus 로고
    • Staging of cervical cancer with soft computing
    • DOI 10.1109/10.846688, PII S001892940005134X
    • Mitra, P. & Mitra, S. 2000. Staging of cervical cancer with soft computing. IEEE Transactions on Biomedical Engineering 47(7), 934-940. (Pubitemid 30421829)
    • (2000) IEEE Transactions on Biomedical Engineering , vol.47 , Issue.7 , pp. 934-940
    • Mitra, P.1    Mitra, S.2    Pal, S.K.3
  • 85
    • 78149355539 scopus 로고    scopus 로고
    • Feature selection algorithms: A survey and experimental evaluation
    • Maebashi City, Japan
    • Molina, L. C., Belanche, L. & Nebot, A. 2002. Feature selection algorithms: a survey and experimental evaluation. In Proceedings of ICDM02, Maebashi City, Japan, 306-313.
    • (2002) Proceedings of ICDM02 , pp. 306-313
    • Molina, L.C.1    Belanche, L.2    Nebot, A.3
  • 87
    • 0001164225 scopus 로고    scopus 로고
    • Axiomatics for fuzzy rough sets
    • PII S0165011497001048
    • Morsi, N. N. & Yakout, M. M. 1998. Axiomatics for fuzzy rough sets. Fuzzy Sets and Systems 100 (1-3), 327-342. (Pubitemid 128654413)
    • (1998) Fuzzy Sets and Systems , vol.100 , Issue.1-3 , pp. 327-342
    • Morsi, N.N.1    Yakout, M.M.2
  • 90
    • 79952950757 scopus 로고    scopus 로고
    • Searching for Relational Patterns in Data
    • Principles of Data Mining and Knowledge Discovery
    • Nguyen, S. H. & Skowron, A. 1997a. Searching for relational patterns in data. In Proceedings of the First European Symposium on Principles of Data Mining and Knowledge Discovery, Trondheim, Norway, 265-276. (Pubitemid 127097511)
    • (1997) LECTURE NOTES IN COMPUTER SCIENCE , Issue.1263 , pp. 265-276
    • Nguyen, S.H.1    Skowron, A.2
  • 91
    • 84958040404 scopus 로고    scopus 로고
    • Approximate reducts and association rules correspondence and complexity results
    • Zhong, N., Skowron, A., & Ohsuga, S. eds, Springer, Heidelberg
    • Nguyen, S. H. & Slezak, D. 2004. Approximate reducts and association rules correspondence and complexity results. Lecture Notes in Computer Science (LNCS), Zhong, N., Skowron, A., & Ohsuga, S. (eds). 1711, Springer, Heidelberg, 137-145.
    • (2004) Lecture Notes in Computer Science (LNCS) , vol.1711 , pp. 137-145
    • Nguyen, S.H.1    Slezak, D.2
  • 92
    • 0003858954 scopus 로고    scopus 로고
    • Department of Computer and Information Science, Norwegian University of Science and Technology, Trondheim, Norway
    • Øhrn, A. 1999. Discernibility and Rough Sets in Medicine: Tools and Applications. Department of Computer and Information Science, Norwegian University of Science and Technology, Trondheim, Norway, 239.
    • (1999) Discernibility and Rough Sets in Medicine: Tools and Applications , vol.239
    • Øhrn, A.1
  • 95
    • 40149092801 scopus 로고    scopus 로고
    • Integrating rough set theory and medical applications
    • Pattaraintakorn, P. & Cercone, N. 2007. Integrating rough set theory and medical applications. Applied Mathematics Letters 21(4), 400-403.
    • (2007) Applied Mathematics Letters , vol.21 , Issue.4 , pp. 400-403
    • Pattaraintakorn, P.1    Cercone, N.2
  • 102
    • 0008435541 scopus 로고    scopus 로고
    • Shadowed sets: Bridging fuzzy and rough sets
    • Pal, S. K. & Skowron, A. eds. Springer-Verlag
    • Pedrycz, W. 1999. Shadowed sets: bridging fuzzy and rough sets. In Rough-Fuzzy Hyridisation, Pal, S. K. & Skowron, A. (eds). Springer-Verlag, 179-199.
    • (1999) Rough-Fuzzy Hyridisation , pp. 179-199
    • Pedrycz, W.1
  • 104
    • 33750927529 scopus 로고    scopus 로고
    • Unsupervised texture discrimination based on rough fuzzy sets and parallel hierarchical clustering
    • September 03-08, 2000, IEEE Computer Society, Washington, DC
    • Petrosino, A. & Ceccarelli, M. 2000. Unsupervised texture discrimination based on rough fuzzy sets and parallel hierarchical clustering. In Proceedings of the International Conference on Pattern Recognition (ICPR'00) 3 (September 03-08, 2000), IEEE Computer Society, Washington, DC.
    • (2000) Proceedings of the International Conference on Pattern Recognition (ICPR'00) , vol.3
    • Petrosino, A.1    Ceccarelli, M.2
  • 106
    • 14544278872 scopus 로고    scopus 로고
    • On the topological properties of fuzzy rough sets
    • DOI 10.1016/j.fss.2004.08.017, PII S0165011404003653
    • Qina, K. & Pei, Z. 2005. On the topological properties of fuzzy rough sets. Fuzzy Sets and Systems 151(3), 601-613. (Pubitemid 40305080)
    • (2005) Fuzzy Sets and Systems , vol.151 , Issue.3 , pp. 601-613
    • Qin, K.1    Pei, Z.2
  • 107
    • 0036498107 scopus 로고    scopus 로고
    • A comparative study of fuzzy rough sets
    • DOI 10.1016/S0165-0114(01)00032-X, PII S016501140100032X
    • Radzikowska, A. M. & Kerre, E. E. 2002. A comparative study of fuzzy rough sets. Fuzzy Sets and Systems 126(2), 137-155. Elsevier, Amsterdam. (Pubitemid 34116140)
    • (2002) Fuzzy Sets and Systems , vol.126 , Issue.2 , pp. 137-155
    • Radzikowska, A.M.1    Kerre, E.E.2
  • 110
    • 57049093744 scopus 로고    scopus 로고
    • Fuzzy-rough nearest neighbors algorithm
    • Sarkar, M. 2007. Fuzzy-rough nearest neighbors algorithm. Fuzzy Sets and Systems 158, 2123-2152.
    • (2007) Fuzzy Sets and Systems , vol.158 , pp. 2123-2152
    • Sarkar, M.1
  • 113
    • 10944273204 scopus 로고    scopus 로고
    • Rough feature selection for neural network based image classification
    • Shang, C. & Shen, Q. 2002. Rough feature selection for neural network based image classification. International Journal of Image and Graphics 2(4), 541-555.
    • (2002) International Journal of Image and Graphics , vol.2 , Issue.4 , pp. 541-555
    • Shang, C.1    Shen, Q.2
  • 114
    • 11844277703 scopus 로고    scopus 로고
    • Dominance relation and rules in an incomplete ordered information system
    • Shao, M.-W. & Zhang, W.-X. 2004. Dominance relation and rules in an incomplete ordered information system. International Journal of Intelligent Systems 20(1), 13-20.
    • (2004) International Journal of Intelligent Systems , vol.20 , Issue.1 , pp. 13-20
    • Shao, M.-W.1    Zhang, W.-X.2
  • 115
    • 0034207737 scopus 로고    scopus 로고
    • A modular approach to generating fuzzy rules with reduced attributes for the monitoring of complex systems
    • Shen, Q. & Chouchoulas, A. 2000. A modular approach to generating fuzzy rules with reduced attributes for the monitoring of complex systems. Engineering Applications of Artificial Intelligence 13(3), 263-278.
    • (2000) Engineering Applications of Artificial Intelligence , vol.13 , Issue.3 , pp. 263-278
    • Shen, Q.1    Chouchoulas, A.2
  • 116
    • 0036833247 scopus 로고    scopus 로고
    • A rough-fuzzy approach for generating classification rules
    • DOI 10.1016/S0031-3203(01)00229-1, PII S0031320301002291
    • Shen, Q. & Chouchoulas, A. 2002. A rough-fuzzy approach for generating classification rules. Pattern Recognition 35(2), 2425-2438. (Pubitemid 34961613)
    • (2002) Pattern Recognition , vol.35 , Issue.11 , pp. 2425-2438
    • Shen, Q.1    Chouchoulas, A.2
  • 117
    • 2442528339 scopus 로고    scopus 로고
    • Selecting informative features with fuzzy-rough sets and its application for complex systems monitoring
    • DOI 10.1016/j.patcog.2003.10.016, PII S0031320303004242
    • Shen, Q. & Jensen, R. 2004. Selecting informative features with fuzzy-rough sets and its application for complex systems monitoring. Pattern Recognition 37(7), 1351-1363. (Pubitemid 38653366)
    • (2004) Pattern Recognition , vol.37 , Issue.7 , pp. 1351-1363
    • Shen, Q.1    Jensen, R.2
  • 119
    • 84990570130 scopus 로고
    • Boolean reasoning for decision rules generation
    • Komorowski, J. & Ras, Z. eds. Lecture Notes in Artificial Intelligence, Trondheim, Norway, Springer-Verlag
    • Skowron, A. 1993. Boolean reasoning for decision rules generation. In Proceedings of the 7th International Symposium ISMIS'93, Komorowski, J. & Ras, Z. (eds). Lecture Notes in Artificial Intelligence, Trondheim, Norway 689, 295-305. Springer-Verlag.
    • (1993) Proceedings of the 7th International Symposium ISMIS'93 , vol.689 , pp. 295-305
    • Skowron, A.1
  • 121
    • 0030217715 scopus 로고    scopus 로고
    • Tolerance approximation spaces
    • Skowron, A. & Stepaniuk, J. 1996. Tolerance approximation spaces. Fundamenta Informaticae 27, 245-253. (Pubitemid 126715034)
    • (1996) Fundamenta Informaticae , vol.27 , Issue.2-3 , pp. 245-253
    • Skowron, A.1    Stepaniuk, J.2
  • 125
    • 0036948440 scopus 로고    scopus 로고
    • Application of rule induction and rough sets to verification of magnetic resonance diagnosis
    • Slowinski, K., Stefanowski, J. & Siwinski, D. 2002. Application of rule induction and rough sets to verification of magnetic resonance diagnosis. Fundamenta Informaticae 53 (3/4), 345-363.
    • (2002) Fundamenta Informaticae , vol.53 , Issue.3-4 , pp. 345-363
    • Slowinski, K.1    Stefanowski, J.2    Siwinski, D.3
  • 127
    • 0002865353 scopus 로고    scopus 로고
    • On rough set based approaches to induction of decision rules
    • Skowron, A. & Polkowski, L. eds, Physica-Verlag
    • Stefanowski, J. 1998. On rough set based approaches to induction of decision rules. In Rough Sets in Knowledge Discovery, Skowron, A. & Polkowski, L. (eds). 1, Physica-Verlag, 500-529.
    • (1998) Rough Sets in Knowledge Discovery , vol.1 , pp. 500-529
    • Stefanowski, J.1
  • 130
    • 79952948247 scopus 로고    scopus 로고
    • Rough sets and bayesian methods applied to cancer detection
    • Rough Sets and Current Trends in Computing
    • Swiniarski, R. 1998. Rough sets Bayesian methods applied to cancer detection. In Proceeding of the First International Conference on Rough Sets and Soft Computing (RSCTC'98), Polkowski, L. & Skowron, A. (eds). LNAI 1424, 609-616. Springer-Verlag, 275-300. (Pubitemid 128093469)
    • (1998) LECTURE NOTES IN COMPUTER SCIENCE , Issue.1424 , pp. 609-616
    • Swiniarski, R.W.1
  • 131
    • 0003194833 scopus 로고    scopus 로고
    • Rough sets and principal component analysis and their applications in data model building and classification
    • Pal, S. K. & Skowron, A. eds. Springer-Verlag
    • Swiniarski, R. 1999. Rough sets and principal component analysis and their applications in data model building and classification. In Rough Fuzzy Hybridization: New Trends in Decision Making, Pal, S. K. & Skowron, A. (eds). Springer-Verlag, 275-300.
    • (1999) Rough Fuzzy Hybridization: New Trends in Decision Making , pp. 275-300
    • Swiniarski, R.1
  • 132
    • 0037332841 scopus 로고    scopus 로고
    • Rough set methods in feature selection and recognition
    • Swiniarski, R. & Skowron, A. 2003. Rough set methods in feature selection and recognition. Pattern Recognition Letters 24(6), 83-849.
    • (2003) Pattern Recognition Letters , vol.24 , Issue.6 , pp. 83-849
    • Swiniarski, R.1    Skowron, A.2
  • 136
    • 0035505464 scopus 로고    scopus 로고
    • Reduction algorithms based on discernibility matrix: The ordered attributes method
    • Wang, J. & Wang, J. 2001. Reduction algorithms based on discernibility matrix: the ordered attributes method. Journal of Computer Science & Technology 16(6), 489-504. (Pubitemid 33110802)
    • (2001) Journal of Computer Science and Technology , vol.16 , Issue.6 , pp. 489-504
    • Wang, J.1    Wang, J.2
  • 137
    • 22944457382 scopus 로고    scopus 로고
    • A hybrid method for relevance feedback in image retrieval using rough sets and neural networks
    • Wang, Y., Ding, M., Zhou, C. & Zhang, T. 2005. A hybrid method for relevance feedback in image retrieval using rough sets and neural networks. International Journal of Computational Cognition 3(1), 78-87.
    • (2005) International Journal of Computational Cognition , vol.3 , Issue.1 , pp. 78-87
    • Wang, Y.1    Ding, M.2    Zhou, C.3    Zhang, T.4
  • 140
    • 33845523839 scopus 로고    scopus 로고
    • Feature selection based on rough sets and particle swarm optimization
    • DOI 10.1016/j.patrec.2006.09.003, PII S0167865506002327
    • Wang, X., Yang, J., Teng, X., Xia, W. & Jensen, R. 2007. Feature selection based on rough sets and particle swarm optimization. Pattern Recognition Letters 28(4), 459-471. (Pubitemid 44920436)
    • (2007) Pattern Recognition Letters , vol.28 , Issue.4 , pp. 459-471
    • Wang, X.1    Yang, J.2    Teng, X.3    Xia, W.4    Jensen, R.5
  • 144
    • 1642525198 scopus 로고    scopus 로고
    • Constructive and axiomatic approaches of fuzzy approximation operators
    • Wu, W. Z. & Zhang, W. X. 2004. Constructive and axiomatic approaches of fuzzy approximation operators. Information Sciences 159 (3-4), 233-254.
    • (2004) Information Sciences , vol.159 , Issue.3-4 , pp. 233-254
    • Wu, W.Z.1    Zhang, W.X.2
  • 145
    • 26944446561 scopus 로고    scopus 로고
    • A study on relationship between fuzzy rough approximation operators and fuzzy topological spaces
    • Wang, L. & Jin, Y. eds. Lecture Notes in Artficial Intelligence, Springer, Heidelberg
    • Wu, W. Z. 2005. A study on relationship between fuzzy rough approximation operators and fuzzy topological spaces. In Fuzzy Systems and Knowledge Discovery 2005, Wang, L. & Jin, Y. (eds). Lecture Notes in Artficial Intelligence 3613, 167-174. Springer, Heidelberg.
    • (2005) Fuzzy Systems and Knowledge Discovery 2005 , vol.3613 , pp. 167-174
    • Wu, W.Z.1
  • 146
    • 19044390948 scopus 로고    scopus 로고
    • On characterizations of (script I sign script T Sign)-fuzzy rough approximation operators
    • DOI 10.1016/j.fss.2005.02.011, PII S0165011405000655
    • Wu, W. Z., Leung, Y. & Mi, J. S. 2005. On characterizations of (I, T)-fuzzy rough approximation operators. Fuzzy Sets and Systems 154(1), 76-102. (Pubitemid 40710188)
    • (2005) Fuzzy Sets and Systems , vol.154 , Issue.1 , pp. 76-102
    • Wu, W.-Z.1    Leung, Y.2    Mi, J.-S.3
  • 147
    • 0012320181 scopus 로고
    • Rough sets and fuzzy sets - Some remarks on interrelations
    • Wygralak, M. 1989. Rough sets and fuzzy sets - some remarks on interrelations. Fuzzy Sets and Systems 29(2), 241-243.
    • (1989) Fuzzy Sets and Systems , vol.29 , Issue.2 , pp. 241-243
    • Wygralak, M.1
  • 149
    • 0012821345 scopus 로고    scopus 로고
    • Combination of rough and fuzzy sets based on α-level sets
    • Lin, T. Y. & Cereone, N. eds. Kluwer Academic Publishers
    • Yao, Y. Y. 1997. Combination of rough and fuzzy sets based on α-level sets. In Rough Sets and Data Mining: Analysis of Imprecise Data, Lin, T. Y. & Cereone, N. (eds). Kluwer Academic Publishers, 301-321.
    • (1997) Rough Sets and Data Mining: Analysis of Imprecise Data , pp. 301-321
    • Yao, Y.Y.1
  • 152
    • 33747120577 scopus 로고    scopus 로고
    • Land cover classification based on tolerant rough set
    • DOI 10.1080/01431160600702368, PII G34747069G523737
    • Yun, O. & Ma, J. 2006. Land cover classification based on tolerant rough set. International Journal of Remote Sensing 27(14), 3041-3047. (Pubitemid 44219172)
    • (2006) International Journal of Remote Sensing , vol.27 , Issue.14 , pp. 3041-3047
    • Yun, O.1    Ma, J.2
  • 154
    • 8344242183 scopus 로고    scopus 로고
    • Classification Using the Variable Precision Rough Set
    • Rough Sets, Fuzzy Sets, Data Mining, and Granular Computing
    • Zhao, Y., Zhang, H. & Pan, Q. 2003. Classification using the variable precision rough set. In Proceedings of Rough Sets, Fuzzy Sets, Data Mining and Granular Computing 2003 2639, 350-353. Chongqing. (Pubitemid 36657983)
    • (2003) LECTURE NOTES IN COMPUTER SCIENCE , Issue.2639 , pp. 350-353
    • Zhao, Y.1    Zhang, H.2    Pan, Q.3
  • 155
    • 28444487999 scopus 로고    scopus 로고
    • A generalized definition of rough approximation based on similarity in variable precision rough sets
    • 2005 International Conference on Machine Learning and Cybernetics, ICMLC 2005
    • Zhao, S. & Zhang, Z. 2005. A generalized definition of rough approximation based on similarity in variable precision rough sets. In Proceedings of the 2005 International Conference on Machine Learning and Cybernetics, Guangzhou, China, 3153-3156. (Pubitemid 41734462)
    • (2005) 2005 International Conference on Machine Learning and Cybernetics, ICMLC 2005 , pp. 3153-3156
    • Zhao, S.-X.1    Zhang, Z.-R.2
  • 157
    • 33746713717 scopus 로고    scopus 로고
    • Classifying email using variable precision rough set approach
    • Zhao, W. Q. & Zhu, Y. L. 2006. Classifying email using variable precision rough set approach. Lecture Notes in Artificial Intelligence 4062, 766-771.
    • (2006) Lecture Notes in Artificial Intelligence , vol.4062 , pp. 766-771
    • Zhao, W.Q.1    Zhu, Y.L.2
  • 159
    • 0035416447 scopus 로고    scopus 로고
    • Using rough sets with heuristics for feature selection
    • DOI 10.1023/A:1011219601502
    • Zhong, N., Dong, J. & Ohsuga, S. 2001. Using rough sets with heuristics for feature selection. Journal of Intelligent Information Systems 16(3), 199-214. (Pubitemid 32886812)
    • (2001) Journal of Intelligent Information Systems , vol.16 , Issue.3 , pp. 199-214
    • Zhong, N.1    Dong, J.2    Ohsuga, S.3
  • 160
    • 0027543613 scopus 로고
    • Variable precision rough set model
    • DOI 10.1016/0022-0000(93)90048-2
    • Ziarko, W. 1993. Variable precision rough set model. Journal of Computer and Systems Sciences 46(1), 39-59. (Pubitemid 23639120)
    • (1993) Journal of Computer and System Sciences , vol.46 , Issue.1 , pp. 39-59
    • Ziarko Wojciech1
  • 161
    • 0242384171 scopus 로고    scopus 로고
    • Acquisition of hierarchy-structured probabilistic decision tables and rules from data
    • Ziarko, W. 2003. Acquisition of hierarchy-structured probabilistic decision tables and rules from data. Expert Systems 20(5), 305-310.
    • (2003) Expert Systems , vol.20 , Issue.5 , pp. 305-310
    • Ziarko, W.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.