메뉴 건너뛰기




Volumn 63, Issue 2, 2007, Pages 183-199

Rough clustering of sequential data

Author keywords

Clustering; Constrained similarity upper approximation; Rough sets; Sequential data; Similarity metric; Web mining

Indexed keywords

ROUGH CLUSTERING; SEQUENTIAL DATA; SIMILARITY METRIC; WEB MINING;

EID: 34447299135     PISSN: 0169023X     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.datak.2007.01.003     Document Type: Article
Times cited : (77)

References (39)
  • 3
    • 35048868300 scopus 로고    scopus 로고
    • Generating compact rough cluster descriptions using an evolutionary algorithm
    • LNCS Springer-Verlag, London, UK
    • Voges K.E., and Pope N.K.L. Generating compact rough cluster descriptions using an evolutionary algorithm. Genetic and Evolutionary Algorithm Conference (2004), LNCS Springer-Verlag, London, UK 1332-1333
    • (2004) Genetic and Evolutionary Algorithm Conference , pp. 1332-1333
    • Voges, K.E.1    Pope, N.K.L.2
  • 4
  • 6
    • 34447341411 scopus 로고    scopus 로고
    • Cluster analysis of marketing data examining online shopping orientation: a comparison of k-means and rough clustering approaches
    • Abbass H.A., Sarker R.A., and Newton C.S. (Eds), Idea Group Publishing, Hershey
    • Voges K.E., Pope N.K.L., and Brown M.R. Cluster analysis of marketing data examining online shopping orientation: a comparison of k-means and rough clustering approaches. In: Abbass H.A., Sarker R.A., and Newton C.S. (Eds). Heuristics and Optimization for Knowledge Discovery (2002), Idea Group Publishing, Hershey 207-224
    • (2002) Heuristics and Optimization for Knowledge Discovery , pp. 207-224
    • Voges, K.E.1    Pope, N.K.L.2    Brown, M.R.3
  • 7
    • 34447327483 scopus 로고    scopus 로고
    • A. Joshi, R. Krishnapuram, Robust fuzzy clustering methods to support web mining, in: Workshop in Data Mining and Knowledge Discovery, SIGMOD, 1998, pp. 15-1-15-8.
  • 8
    • 3543125904 scopus 로고    scopus 로고
    • An indiscernibility-based clustering method with iterative refinement of equivalence relations -rough clustering
    • Hirano S., and Tsumoto S. An indiscernibility-based clustering method with iterative refinement of equivalence relations -rough clustering. Journal of Advanced Computational Intelligence and Intelligent Informatics 7 2 (2003) 169-177
    • (2003) Journal of Advanced Computational Intelligence and Intelligent Informatics , vol.7 , Issue.2 , pp. 169-177
    • Hirano, S.1    Tsumoto, S.2
  • 9
  • 10
    • 34447297503 scopus 로고    scopus 로고
    • A rough set theoretic approach to clustering
    • De S.K. A rough set theoretic approach to clustering. Fundamenta Informaticae 7 2 (1999) 335-344
    • (1999) Fundamenta Informaticae , vol.7 , Issue.2 , pp. 335-344
    • De, S.K.1
  • 13
    • 5044226706 scopus 로고    scopus 로고
    • Clustering web transactions using rough approximation
    • De S.K., and Krishna P.R. Clustering web transactions using rough approximation. Fuzzy Sets and Systems 148 1 (2004) 131-138
    • (2004) Fuzzy Sets and Systems , vol.148 , Issue.1 , pp. 131-138
    • De, S.K.1    Krishna, P.R.2
  • 14
    • 34447301996 scopus 로고    scopus 로고
    • Finding dependency of attributes in information system
    • De S.K., Biswas R., and Roy A.R. Finding dependency of attributes in information system. Journal of Fuzzy Mathematics 64 3-4 (2004) 409-417
    • (2004) Journal of Fuzzy Mathematics , vol.64 , Issue.3-4 , pp. 409-417
    • De, S.K.1    Biswas, R.2    Roy, A.R.3
  • 15
    • 0033906937 scopus 로고    scopus 로고
    • Rough clustering and its application to medicine
    • Hirano S., and Tsumoto S. Rough clustering and its application to medicine. Information Science 124 (2000) 125-137
    • (2000) Information Science , vol.124 , pp. 125-137
    • Hirano, S.1    Tsumoto, S.2
  • 19
    • 0037121517 scopus 로고    scopus 로고
    • Rough-fuzzy functions in classification
    • Sarkar M. Rough-fuzzy functions in classification. Fuzzy Sets and Systems 132 3 (2002) 353-369
    • (2002) Fuzzy Sets and Systems , vol.132 , Issue.3 , pp. 353-369
    • Sarkar, M.1
  • 21
    • 84964528874 scopus 로고    scopus 로고
    • L. Bergroth, H. Hakonen, T. Raita, A survey of longest common subsequence algorithm, in: Seventh International Symposium on String Processing and Information Retriveal, Atlanta, 2000, pp. 39-48.
  • 24
    • 0001819987 scopus 로고    scopus 로고
    • Rough set processing of vague information using fuzzy similarity relations
    • Calude C.S., and Paun G. (Eds), LNCS Springer-Verlag, London
    • Greco S., Matarazzo B., and Slowinski R. Rough set processing of vague information using fuzzy similarity relations. In: Calude C.S., and Paun G. (Eds). Finite Versus Infinite - Contributions to an Eternal Dilemma (2000), LNCS Springer-Verlag, London 149-173
    • (2000) Finite Versus Infinite - Contributions to an Eternal Dilemma , pp. 149-173
    • Greco, S.1    Matarazzo, B.2    Slowinski, R.3
  • 27
    • 0002650257 scopus 로고    scopus 로고
    • Generalized rough set models
    • Physica-Verlag, Heidelberg
    • Yao Y.Y. Generalized rough set models. Rough Sets in Knowledge Discovery (1998), Physica-Verlag, Heidelberg 286-318
    • (1998) Rough Sets in Knowledge Discovery , pp. 286-318
    • Yao, Y.Y.1
  • 28
    • 8344253612 scopus 로고    scopus 로고
    • Y.Y. Yao, On generalizing rough set theory, in: 9th International Conference on Rough Sets, Fuzzy Sets, Data Mining, and Granular Computing, 2003, pp. 44-51.
  • 29
    • 0032294902 scopus 로고    scopus 로고
    • Rough set approach to incomplete information systems
    • Kryszkiewicz M. Rough set approach to incomplete information systems. Information Science 112 1-4 (1998) 39-49
    • (1998) Information Science , vol.112 , Issue.1-4 , pp. 39-49
    • Kryszkiewicz, M.1
  • 30
    • 0036471411 scopus 로고    scopus 로고
    • Nonhierarchical document clustering based on a tolerance rough set model
    • Ho T.B., and Nguyen N.B. Nonhierarchical document clustering based on a tolerance rough set model. International Journal of Intelligent Systems 17 2 (2002) 199-212
    • (2002) International Journal of Intelligent Systems , vol.17 , Issue.2 , pp. 199-212
    • Ho, T.B.1    Nguyen, N.B.2
  • 32
    • 33748867056 scopus 로고    scopus 로고
    • A method of web search result clustering based on rough sets
    • Ngo C.L., and Nguyen H.S. A method of web search result clustering based on rough sets. Web Intelligence (2005) 673-679
    • (2005) Web Intelligence , pp. 673-679
    • Ngo, C.L.1    Nguyen, H.S.2
  • 33
    • 34447299356 scopus 로고    scopus 로고
    • R. Slowinski, D. Vanderpooten, Similarity relations as a basis for rough approximations, ICS Research Report 53/95, Warsaw University Technology, 1995.
  • 39
    • 15544376208 scopus 로고    scopus 로고
    • Web usage mining: Comparison of conventional, fuzzy, and rough set clustering
    • Zhang Y., Liu J., and Yao Y. (Eds), Springer
    • Lingras P., Yan R., and Jain A. Web usage mining: Comparison of conventional, fuzzy, and rough set clustering. In: Zhang Y., Liu J., and Yao Y. (Eds). Computational Web Intelligence: Intelligent Technology for Web Applications (2004), Springer 133-148
    • (2004) Computational Web Intelligence: Intelligent Technology for Web Applications , pp. 133-148
    • Lingras, P.1    Yan, R.2    Jain, A.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.