메뉴 건너뛰기




Volumn 22, Issue 3, 2010, Pages 305-317

A distance measure approach to exploring the rough set boundary region for attribute reduction

Author keywords

Attribute reduction; Boundary region; Classification; Fuzzy sets; Rough sets

Indexed keywords

ATTRIBUTE REDUCTION; BOUNDARY REGION; BOUNDARY REGIONS; CLASSIFICATION ACCURACY; DATA SETS; DEPENDENCY VALUE; DIMENSIONALITY REDUCTION; DISTANCE MEASURE; DISTANCE METRICS; FEATURE SELECTION; LOWER APPROXIMATION; PREDICTION PERFORMANCE; REAL-VALUED DATA; ROUGH SET; RUNTIMES;

EID: 76749110434     PISSN: 10414347     EISSN: None     Source Type: Journal    
DOI: 10.1109/TKDE.2009.119     Document Type: Article
Times cited : (137)

References (38)
  • 2
    • 0242322799 scopus 로고    scopus 로고
    • Rough set-aided keyword reduction for text categorisation
    • A. Chouchoulas and Q. Shen, "Rough Set-Aided Keyword Reduction for Text Categorisation," Applied Artificial Intelligence, vol.15, no.9, pp. 843-873, 2001.
    • (2001) Applied Artificial Intelligence , vol.15 , Issue.9 , pp. 843-873
    • Chouchoulas, A.1    Shen, Q.2
  • 5
    • 0038667021 scopus 로고
    • Putting rough sets and fuzzy sets together
    • Kluwer Academic Publishers
    • D. Dubois and H. Prade, "Putting Rough Sets and Fuzzy Sets Together," Intelligent Decision Support, pp. 203-232, Kluwer Academic Publishers, 1992.
    • (1992) Intelligent Decision Support , pp. 203-232
    • Dubois, D.1    Prade, H.2
  • 8
    • 4444310339 scopus 로고    scopus 로고
    • Rough set approach for attribute reduction and rule generation: A case of patients with suspected breast cancer
    • A. Hassanien, "Rough Set Approach for Attribute Reduction and Rule Generation: A Case of Patients with Suspected Breast Cancer," J. Am. Soc. Information Science and Technology, vol.55, no.11, pp. 954-962, 2004.
    • (2004) J. Am. Soc. Information Science and Technology , vol.55 , Issue.11 , pp. 954-962
    • Hassanien, A.1
  • 9
    • 49049094181 scopus 로고    scopus 로고
    • Tabu search for attribute reduction in rough set theory
    • Dept. of Applied Mathematics and Physics, Kyoto Univ.
    • A. Hedar, J. Wang, and M. Fukushima, "Tabu Search for Attribute Reduction in Rough Set Theory," Technical Report 2006-2008, Dept. of Applied Mathematics and Physics, Kyoto Univ., 2006.
    • (2006) Technical Report 2006-2008
    • Hedar, A.1    Wang, J.2    Fukushima, M.3
  • 11
    • 58249088810 scopus 로고    scopus 로고
    • Measures based on upper approximations of rough sets for analysis of attribute importance and interaction
    • M. Inuiguchi and M. Tsurumi, "Measures Based on Upper Approximations of Rough Sets for Analysis of Attribute Importance and Interaction," Int'l J. Innovative Computing, Information and Control, vol.2, no.1, pp. 1-12, 2006.
    • (2006) Int'l J. Innovative Computing, Information and Control , vol.2 , Issue.1 , pp. 1-12
    • Inuiguchi, M.1    Tsurumi, M.2
  • 12
    • 10944249572 scopus 로고    scopus 로고
    • Semantics-preserving dimensionality reduction: Rough and fuzzy-rough-based approaches
    • Dec.
    • R. Jensen and Q. Shen, "Semantics-Preserving Dimensionality Reduction: Rough and Fuzzy-Rough-Based Approaches," IEEE Trans. Knowledge and Data Eng., vol.16, no.12, pp. 1457-1471, Dec. 2004.
    • (2004) IEEE Trans. Knowledge and Data Eng. , vol.16 , Issue.12 , pp. 1457-1471
    • Jensen, R.1    Shen, Q.2
  • 13
    • 33745625117 scopus 로고    scopus 로고
    • Applying indiscernibility attribute sets to knowledge reduction
    • Springer
    • H.R. Li and W.X. Zhang, "Applying Indiscernibility Attribute Sets to Knowledge Reduction," Lecture Notes in Artificial Intelligence, pp. 816-821, Springer, 2005.
    • (2005) Lecture Notes in Artificial Intelligence , pp. 816-821
    • Li, H.R.1    Zhang, W.X.2
  • 17
    • 58249084603 scopus 로고    scopus 로고
    • Exploring the boundary region of tolerance rough sets for feature selection
    • May
    • N. Mac Parthaláin and Q. Shen, "Exploring the Boundary Region of Tolerance Rough Sets for Feature Selection," Pattern Recognition, vol.42, pp. 655-667, http://www.sciencedirect.com/ science/article/B6V14- 4TDC09M-1/2/9735ab90392246f032a2632 eda77ae0e, May 2009.
    • (2009) Pattern Recognition , vol.42 , pp. 655-667
    • Mac Parthaláin, N.1    Shen, Q.2
  • 18
    • 85028883788 scopus 로고
    • Feature selection using rough sets theory
    • P.B. Brazdil, ed.
    • M. Modrzejewski, "Feature Selection Using Rough Sets Theory," Proc. European Conf. Machine Learning, P.B. Brazdil, ed., pp. 213-226, 1993.
    • (1993) Proc. European Conf. Machine Learning , pp. 213-226
    • Modrzejewski, M.1
  • 22
    • 0032715028 scopus 로고    scopus 로고
    • The hausdorff distance measure for feature selection in learning applications
    • S. Piramuthu, "The Hausdorff Distance Measure for Feature Selection in Learning Applications," Proc. 32nd Ann. Hawaii Int'l Conf. System Sciences, vol.6, 1999.
    • (1999) Proc. 32nd Ann. Hawaii Int'l Conf. System Sciences , vol.6
    • Piramuthu, S.1
  • 23
    • 1842583457 scopus 로고    scopus 로고
    • Case generation using rough sets with fuzzy representation
    • Mar.
    • S.K. Pal and P. Mitra, "Case Generation Using Rough Sets with Fuzzy Representation," IEEE Trans. Knowledge and Data Eng., vol.16, no.3, pp. 292-300, Mar. 2004.
    • (2004) IEEE Trans. Knowledge and Data Eng. , vol.16 , Issue.3 , pp. 292-300
    • Pal, S.K.1    Mitra, P.2
  • 27
    • 4344652669 scopus 로고    scopus 로고
    • Hausdorff distance and image processing
    • B. Sendov, "Hausdorff Distance and Image Processing," Russian Math Surveys, vol.59, no.2, pp. 319-328, 2004.
    • (2004) Russian Math Surveys , vol.59 , Issue.2 , pp. 319-328
    • Sendov, B.1
  • 28
    • 2442528339 scopus 로고    scopus 로고
    • Selecting informative features with fuzzy-rough sets and its application for complex systems monitoring
    • Q. Shen and R. Jensen, "Selecting Informative Features with Fuzzy-Rough Sets and Its Application for Complex Systems Monitoring," Pattern Recognition, vol.37, no.7, pp. 1351-1363, 2004.
    • (2004) Pattern Recognition , vol.37 , Issue.7 , pp. 1351-1363
    • Shen, Q.1    Jensen, R.2
  • 30
    • 0038368682 scopus 로고    scopus 로고
    • Various approaches to reasoning with frequency based decision reducts: A survey
    • L. Polkowski, S. Tsumoto, T.Y. Lin, eds. Physica-Verlag
    • D. Slezak, "Various Approaches to Reasoning with Frequency Based Decision Reducts: A Survey," Rough Set Methods and Applications, L. Polkowski, S. Tsumoto, T.Y. Lin, eds., pp 235-285, Physica-Verlag, 2000.
    • (2000) Rough Set Methods and Applications , pp. 235-285
    • Slezak, D.1
  • 31
    • 0003391417 scopus 로고
    • R. Slowinski, ed. Kluwer Academic Publishers
    • Intelligent Decision Support, R. Slowinski, ed. Kluwer Academic Publishers, 1992.
    • (1992) Intelligent Decision Support
  • 33
    • 0037332841 scopus 로고    scopus 로고
    • Rough set methods in feature selection and recognition
    • R.W. Swiniarski and A. Skowron, "Rough Set Methods in Feature Selection and Recognition," Pattern Recognition Letters, vol.24, no.6, pp. 833-849, 2003.
    • (2003) Pattern Recognition Letters , vol.24 , Issue.6 , pp. 833-849
    • Swiniarski, R.W.1    Skowron, A.2
  • 36
    • 0032147655 scopus 로고    scopus 로고
    • A comparative study of fuzzy sets and rough sets
    • Y. Yao, "A Comparative Study of Fuzzy Sets and Rough Sets," Information Sciences, vol.109, pp. 21-47, 1998.
    • (1998) Information Sciences , vol.109 , pp. 21-47
    • Yao, Y.1
  • 37
    • 0035416447 scopus 로고    scopus 로고
    • Using rough sets with heuristics for feature selection
    • N. Zhong, J. Dong, and S. Ohsuga, "Using Rough Sets with Heuristics for Feature Selection," J. Intelligent Information Systems, vol.16, no.3, pp. 199-214, 2001.
    • (2001) J. Intelligent Information Systems , vol.16 , Issue.3 , pp. 199-214
    • Zhong, N.1    Dong, J.2    Ohsuga, S.3
  • 38
    • 0027543613 scopus 로고
    • Variable precision rough set model
    • W. Ziarko, "Variable Precision Rough Set Model," J. Computer and System Sciences, vol.46, no.1, pp. 39-59, 1993.
    • (1993) J. Computer and System Sciences , vol.46 , Issue.1 , pp. 39-59
    • Ziarko, W.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.