메뉴 건너뛰기




Volumn 57, Issue 4, 2011, Pages 996-1007

Nonlinear stochastic modeling to improve state estimation in process monitoring and control

Author keywords

Covariance estimation; Nonlinear modeling; Process control; State estimation; Stochastic modeling

Indexed keywords

ADVANCED MONITORING; AUTOCOVARIANCES; CHEMICAL PROCESS; COVARIANCE ESTIMATION; DESIGN METHOD; HIGH QUALITY; IN-PROCESS MONITORING; LEAST-SQUARES TECHNIQUES; LINEAR TIME VARYING; MODEL ERRORS; NOISE COVARIANCE; NON-LINEAR DYNAMICS; NONLINEAR MODELING; NONLINEAR PROCESS MODELS; NONLINEAR STATE ESTIMATION; OPERATING DATA; PLANT MEASUREMENT; POLYMERIZATION PROCESS; PROCESS DISTURBANCES; SENSOR NOISE; STATE ESTIMATORS; STOCHASTIC DISTURBANCE MODEL; STOCHASTIC DISTURBANCES; STOCHASTIC MODELING;

EID: 79952596020     PISSN: 00011541     EISSN: 15475905     Source Type: Journal    
DOI: 10.1002/aic.12308     Document Type: Article
Times cited : (52)

References (55)
  • 1
    • 29244454276 scopus 로고    scopus 로고
    • A new autocovariance least-squares method for estimating noise covariances
    • Odelson BJ, Rajamani MR, Rawlings JB. A new autocovariance least-squares method for estimating noise covariances. Automatica. 2006; 42: 303-308.
    • (2006) Automatica. , vol.42 , pp. 303-308
    • Odelson, B.J.1    Rajamani, M.R.2    Rawlings, J.B.3
  • 2
    • 33646020970 scopus 로고    scopus 로고
    • The autocovariance least-squares method for estimating covariances: application to model-based control of chemical reactors
    • Odelson BJ, Lutz A, Rawlings JB. The autocovariance least-squares method for estimating covariances: application to model-based control of chemical reactors. IEEE Control Syst Technol. 2006; 14: 532-541.
    • (2006) IEEE Control Syst Technol. , vol.14 , pp. 532-541
    • Odelson, B.1    Lutz, A.2    Rawlings, J.B.3
  • 3
    • 79952578918 scopus 로고    scopus 로고
    • Estimation of the Disturbance Structure from Data Using Semidefinite Programming and Optimal Weighting. Technical Report 2007-02, TWMCC, Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, Available at:
    • Rajamani MR, Rawlings JB. Estimation of the Disturbance Structure from Data Using Semidefinite Programming and Optimal Weighting. Technical Report 2007-02, TWMCC, Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, 2007. Available at:
    • (2007)
    • Rajamani, M.R.1    Rawlings, J.B.2
  • 4
    • 58049217305 scopus 로고    scopus 로고
    • Estimation of the disturbance structure from data using semidefinite programming and optimal weighting
    • Rajamani MR, Rawlings JB. Estimation of the disturbance structure from data using semidefinite programming and optimal weighting. Automatica. 2009; 45: 142-148.
    • (2009) Automatica. , vol.45 , pp. 142-148
    • Rajamani, M.R.1    Rawlings, J.B.2
  • 5
    • 79952589245 scopus 로고    scopus 로고
    • Application of a New Data-Based Covariance Estimation Technique to a Nonlinear Industrial Blending Drum. Technical Report 2007-03, TWMCC, Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, Available at:
    • Rajamani MR, Rawlings JB, Soderstrom TA. Application of a New Data-Based Covariance Estimation Technique to a Nonlinear Industrial Blending Drum. Technical Report 2007-03, TWMCC, Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, 2007. Available at:
    • (2007)
    • Rajamani, M.R.1    Rawlings, J.B.2    Soderstrom, T.A.3
  • 6
    • 0014764781 scopus 로고
    • On the identification of variances and adaptive Kalman filtering
    • Mehra RK. On the identification of variances and adaptive Kalman filtering. IEEE Trans Automat Contr. 1970; 15: 175-184.
    • (1970) IEEE Trans Automat Contr. , vol.15 , pp. 175-184
    • Mehra, R.K.1
  • 7
    • 0015416561 scopus 로고
    • Approaches to adaptive filtering
    • Mehra RK. Approaches to adaptive filtering. IEEE Trans Automat Contr. 1972; 17: 903-908.
    • (1972) IEEE Trans Automat Contr. , vol.17 , pp. 903-908
    • Mehra, R.K.1
  • 8
    • 0015725012 scopus 로고
    • Identification of optimum filter steady-state gain for systems with unknown noise covariances
    • Carew B, Bélanger PR. Identification of optimum filter steady-state gain for systems with unknown noise covariances. IEEE Trans Automat Contr. 1973; 18: 582-587.
    • (1973) IEEE Trans Automat Contr. , vol.18 , pp. 582-587
    • Carew, B.1    Bélanger, P.R.2
  • 9
    • 0016060378 scopus 로고
    • Estimation of noise covariance matrices for a linear time-varying stochastic process
    • Bélanger PR. Estimation of noise covariance matrices for a linear time-varying stochastic process. Automatica. 1974; 10: 267-275.
    • (1974) Automatica. , vol.10 , pp. 267-275
    • Bélanger, P.R.1
  • 10
    • 0016118077 scopus 로고
    • Comments on Identification of optimum filter steady-state gain for systems with unknown noise covariances
    • Neethling C, Young P. Comments on Identification of optimum filter steady-state gain for systems with unknown noise covariances. IEEE Trans Automat Contr. 1974; 19: 623-625.
    • (1974) IEEE Trans Automat Contr. , vol.19 , pp. 623-625
    • Neethling, C.1    Young, P.2
  • 11
    • 0031233040 scopus 로고    scopus 로고
    • Adaptive estimation of noise covariance matrices in real-time preprocessing of geophysical data
    • Noriega G, Pasupathy S. Adaptive estimation of noise covariance matrices in real-time preprocessing of geophysical data. IEEE Trans Geosci Remote Sens. 1997; 35: 1146-1159.
    • (1997) IEEE Trans Geosci Remote Sens. , vol.35 , pp. 1146-1159
    • Noriega, G.1    Pasupathy, S.2
  • 13
    • 0346724496 scopus 로고    scopus 로고
    • Parameter estimation in stochastic grey-box models
    • Kristensen NR, Madsen H, Jørgensen SB. Parameter estimation in stochastic grey-box models. Automatica. 2004; 40: 225-237.
    • (2004) Automatica. , vol.40 , pp. 225-237
    • Kristensen, N.R.1    Madsen, H.2    Jørgensen, S.B.3
  • 14
    • 0348239361 scopus 로고    scopus 로고
    • A method for systematic improvement of stochastic grey-box models
    • Kristensen NR, Madsen H, Jørgensen SB. A method for systematic improvement of stochastic grey-box models. Comput Chem Eng. 2004; 28: 1431-1449.
    • (2004) Comput Chem Eng. , vol.28 , pp. 1431-1449
    • Kristensen, N.R.1    Madsen, H.2    Jørgensen, S.B.3
  • 15
    • 44549084178 scopus 로고    scopus 로고
    • Explicit stochastic predictive control of combustion plants based on Gaussian process models
    • Grancharova A, Kocijan J, Johansen TA. Explicit stochastic predictive control of combustion plants based on Gaussian process models. Automatica. 2008; 44: 1621-1631.
    • (2008) Automatica. , vol.44 , pp. 1621-1631
    • Grancharova, A.1    Kocijan, J.2    Johansen, T.A.3
  • 16
    • 24144445116 scopus 로고    scopus 로고
    • Lecture Notes in Computer Science
    • In: Murray-Smith R, Shorten R, editors. Switching and Learning in Feedback Systems, Volume of Heidelberg, Germany: Springer-Verlag
    • Kocijan J, Murray-Smith R. Nonlinear predictive control with a Gaussian process model. In: Murray-Smith R, Shorten R, editors. Switching and Learning in Feedback Systems, Volume 3355 of Lecture Notes in Computer Science. Heidelberg, Germany: Springer-Verlag, 2005: 185-200.
    • (2005) Nonlinear predictive control with a Gaussian process model , vol.3355 , pp. 185-200
    • Kocijan, J.1    Murray-Smith, R.2
  • 17
    • 49549124024 scopus 로고    scopus 로고
    • Gas-liquid separator modelling and simulation with Gaussian process models
    • Kocijan J, Likar B. Gas-liquid separator modelling and simulation with Gaussian process models. Simulat Model Pract Theor. 2008; 16: 910-922.
    • (2008) Simulat Model Pract Theor. , vol.16 , pp. 910-922
    • Kocijan, J.1    Likar, B.2
  • 18
    • 79952591737 scopus 로고    scopus 로고
    • Data-Based Techniques to Improve State Estimation in Model Predictive Control. PhD Thesis, University of Wisconsin-Madison, Madison, WI
    • Rajamani MR. Data-Based Techniques to Improve State Estimation in Model Predictive Control. PhD Thesis, University of Wisconsin-Madison, Madison, WI, 2007.
    • (2007)
    • Rajamani, M.R.1
  • 19
    • 0033952227 scopus 로고    scopus 로고
    • Systematic estimation of state noise statistics for extended Kalman filters
    • Valappil J, Georgakis C. Systematic estimation of state noise statistics for extended Kalman filters. AIChE J. 2000; 46: 292-308.
    • (2000) AIChE J. , vol.46 , pp. 292-308
    • Valappil, J.1    Georgakis, C.2
  • 20
    • 0003440756 scopus 로고
    • Stochastic Processes and Filtering Theory
    • New York: Academic Press
    • Jazwinski AH. Stochastic Processes and Filtering Theory. New York: Academic Press, 1970.
    • (1970)
    • Jazwinski, A.H.1
  • 21
    • 21244437999 scopus 로고    scopus 로고
    • Unscented filtering and nonlinear estimation
    • Julier SJ, Uhlmann JK. Unscented filtering and nonlinear estimation. Proc IEEE. 2004; 92: 401-422.
    • (2004) Proc IEEE. , vol.92 , pp. 401-422
    • Julier, S.J.1    Uhlmann, J.K.2
  • 22
    • 33750313512 scopus 로고    scopus 로고
    • Robust and reliable estimation via unscented recursive nonlinear dynamic data reconciliation
    • Vachhani P, Narasimhan S, Rengaswamy R. Robust and reliable estimation via unscented recursive nonlinear dynamic data reconciliation. J Process Control. 2006; 16: 1075-1086.
    • (2006) J Process Control. , vol.16 , pp. 1075-1086
    • Vachhani, P.1    Narasimhan, S.2    Rengaswamy, R.3
  • 23
    • 58749086947 scopus 로고    scopus 로고
    • Computation of arrival cost for moving horizon estimation via unscent Kalman filtering
    • Qu CC, Hahn J. Computation of arrival cost for moving horizon estimation via unscent Kalman filtering. J Process Contr. 2009; 19: 358-363.
    • (2009) J Process Contr. , vol.19 , pp. 358-363
    • Qu, C.C.1    Hahn, J.2
  • 24
    • 52949131353 scopus 로고    scopus 로고
    • Constrained state estimation using the unscented kalman filter. In: Procedings of the 16th Mediterranean Conference on Control and Automation, Ajaccio, France, June
    • Kandepu R, Imsland L, Foss BA. Constrained state estimation using the unscented kalman filter. In: Procedings of the 16th Mediterranean Conference on Control and Automation, Ajaccio, France, June, 2008: 1453-1458.
    • (2008) , pp. 1453-1458
    • Kandepu, R.1    Imsland, L.2    Foss, B.A.3
  • 25
    • 62949178808 scopus 로고    scopus 로고
    • Unscented filtering for interval-constrained nonlinear systems. In: Proceedings of the 47th IEEE Conference on Decision and Control, Cancun, Mexico, December 9-11
    • Teixeira BOS, Tôrres LAB, Aguirre LA, Bernstein DS. Unscented filtering for interval-constrained nonlinear systems. In: Proceedings of the 47th IEEE Conference on Decision and Control, Cancun, Mexico, December 9-11, 2008: 5116-5121.
    • (2008) , pp. 5116-5121
    • Teixeira, B.O.S.1    Tôrres, L.A.B.2    Aguirre, L.A.3    Bernstein, D.S.4
  • 26
    • 84874286884 scopus 로고
    • Monte Carlo techniques to estimate the conditional expectation in multistage nonlinear filtering
    • Handschin JE, Mayne DQ. Monte Carlo techniques to estimate the conditional expectation in multistage nonlinear filtering. Int J Control. 1969; 9: 547-559.
    • (1969) Int J Control. , vol.9 , pp. 547-559
    • Handschin, J.E.1    Mayne, D.Q.2
  • 28
    • 0001460136 scopus 로고    scopus 로고
    • On sequential Monte Carlo sampling methods for Bayesian filtering
    • Doucet A, Godsill S, Andrieu C. On sequential Monte Carlo sampling methods for Bayesian filtering. Stat Comput. 2000; 10: 197-208.
    • (2000) Stat Comput. , vol.10 , pp. 197-208
    • Doucet, A.1    Godsill, S.2    Andrieu, C.3
  • 29
    • 0036475447 scopus 로고    scopus 로고
    • A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking
    • Arulampalam MS, Maskell S, Gordon NJ, Clapp T. A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking. IEEE Trans Signal Process. 2002; 50: 174-188.
    • (2002) IEEE Trans Signal Process. , vol.50 , pp. 174-188
    • Arulampalam, M.S.1    Maskell, S.2    Gordon, N.J.3    Clapp, T.4
  • 30
    • 3042733565 scopus 로고    scopus 로고
    • Bayesian estimation of unconstrained nonlinear dynamic systems via sequential Monte Carlo sampling
    • Chen WS, Bakshi BR, Goel PK, Ungarala S. Bayesian estimation of unconstrained nonlinear dynamic systems via sequential Monte Carlo sampling. Ind Eng Chem Res. 2004; 43: 4012-4025.
    • (2004) Ind Eng Chem Res. , vol.43 , pp. 4012-4025
    • Chen, W.S.1    Bakshi, B.R.2    Goel, P.K.3    Ungarala, S.4
  • 31
    • 34547583106 scopus 로고    scopus 로고
    • Bayesian estimation via sequential Monte Carlo sampling-constrained dynamic systems
    • Lang L, Chen WS, Bakshi BR, Goel PK, Ungarala S. Bayesian estimation via sequential Monte Carlo sampling-constrained dynamic systems. Automatica. 2007; 43: 1615-1622.
    • (2007) Automatica. , vol.43 , pp. 1615-1622
    • Lang, L.1    Chen, W.S.2    Bakshi, B.R.3    Goel, P.K.4    Ungarala, S.5
  • 32
    • 54249135972 scopus 로고    scopus 로고
    • Constrained Bayesian state estimation using a cell filter
    • Ungarala S, Li K, Chen Z. Constrained Bayesian state estimation using a cell filter. Ind Eng Chem Res. 2008; 47: 7312-7322.
    • (2008) Ind Eng Chem Res. , vol.47 , pp. 7312-7322
    • Ungarala, S.1    Li, K.2    Chen, Z.3
  • 33
    • 60649098521 scopus 로고    scopus 로고
    • The use of a cell filter for state estimation in closed-loop NMPC of low dimensional systems
    • Ungarala S, Li K. The use of a cell filter for state estimation in closed-loop NMPC of low dimensional systems. J Process Control. 2009; 19: 550-556.
    • (2009) J Process Control. , vol.19 , pp. 550-556
    • Ungarala, S.1    Li, K.2
  • 34
    • 0038165025 scopus 로고    scopus 로고
    • Constrained process monitoring: moving- horizon approach
    • Rao CV, Rawlings JB. Constrained process monitoring: moving- horizon approach. AIChE J. 2002; 48: 97-109.
    • (2002) AIChE J. , vol.48 , pp. 97-109
    • Rao, C.V.1    Rawlings, J.B.2
  • 35
    • 0030215706 scopus 로고    scopus 로고
    • A moving horizon-based approach for least-squares state estimation
    • Robertson DG, Lee JH, Rawlings JB. A moving horizon-based approach for least-squares state estimation. AIChE J. 1996; 42: 2209-2224.
    • (1996) AIChE J. , vol.42 , pp. 2209-2224
    • Robertson, D.G.1    Lee, J.H.2    Rawlings, J.B.3
  • 36
    • 0036642674 scopus 로고    scopus 로고
    • On the use of constraints in least squares estimation and control
    • Robertson DG, Lee JH. On the use of constraints in least squares estimation and control. Automatica. 2002; 38: 1113-1124.
    • (2002) Automatica. , vol.38 , pp. 1113-1124
    • Robertson, D.G.1    Lee, J.H.2
  • 37
    • 0037291591 scopus 로고    scopus 로고
    • Constrained state estimation for nonlinear discrete-time systems: stability and moving horizon approximations
    • Rao CV, Rawlings JB, Mayne DQ. Constrained state estimation for nonlinear discrete-time systems: stability and moving horizon approximations. IEEE Trans Automat Contr. 2003; 48: 246-258.
    • (2003) IEEE Trans Automat Contr. , vol.48 , pp. 246-258
    • Rao, C.V.1    Rawlings, J.B.2    Mayne, D.Q.3
  • 38
    • 45849106830 scopus 로고    scopus 로고
    • Moving-horizon state estimation for nonlinear discrete-time systems: new stability results and approximation schemes
    • Alessandri A, Baglietto M, Battistelli G. Moving-horizon state estimation for nonlinear discrete-time systems: new stability results and approximation schemes. Automatica. 2008; 44: 1753-1765.
    • (2008) Automatica. , vol.44 , pp. 1753-1765
    • Alessandri, A.1    Baglietto, M.2    Battistelli, G.3
  • 39
    • 33747883188 scopus 로고    scopus 로고
    • Particle filtering and moving horizon estimation
    • Rawlings JB, Bakshi BR. Particle filtering and moving horizon estimation. Comput Chem Eng. 2006; 30: 1529-1541.
    • (2006) Comput Chem Eng. , vol.30 , pp. 1529-1541
    • Rawlings, J.B.1    Bakshi, B.R.2
  • 40
    • 46449126261 scopus 로고    scopus 로고
    • Improved state estimation using a combination of moving horizon estimator and particle filters. In: Proceedings of the American Control Conference, New York, USA, July 11-13
    • Rajamani MR, Rawlings JB. Improved state estimation using a combination of moving horizon estimator and particle filters. In: Proceedings of the American Control Conference, New York, USA, July 11-13, 2007.
    • (2007)
    • Rajamani, M.R.1    Rawlings, J.B.2
  • 42
    • 52049101562 scopus 로고    scopus 로고
    • A fast moving horizon estimation algorithm based on nonlinear programming sensitivity
    • Zavala VM, Laird CD, Biegler LT. A fast moving horizon estimation algorithm based on nonlinear programming sensitivity. J Process Contr. 2008; 18: 876-884.
    • (2008) J Process Contr. , vol.18 , pp. 876-884
    • Zavala, V.M.1    Laird, C.D.2    Biegler, L.T.3
  • 43
    • 40949111947 scopus 로고    scopus 로고
    • A moving horizon state estimation algorithm applied to the Tennessee Eastman benchmark process. In: IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems, Heidelberg, Germany
    • Kraus T, Kühl P, Wirsching L, Bock HG, Diehl M. A moving horizon state estimation algorithm applied to the Tennessee Eastman benchmark process. In: IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems, Heidelberg, Germany, 2006: 377-382.
    • (2006) , pp. 377-382
    • Kraus, T.1    Kühl, P.2    Wirsching, L.3    Bock, H.G.4    Diehl, M.5
  • 44
    • 79952612121 scopus 로고    scopus 로고
    • Efficient numerical methods for nonlinear MPC and moving horizon estimation. In: Proceedings of the International Workshop on Assessment and Future Directions of NMPC, Pavia, Italy, September
    • Diehl M, Ferreau HJ, Haverbeke N. Efficient numerical methods for nonlinear MPC and moving horizon estimation. In: Proceedings of the International Workshop on Assessment and Future Directions of NMPC, Pavia, Italy, September, 2008.
    • (2008)
    • Diehl, M.1    Ferreau, H.J.2    Haverbeke, N.3
  • 45
    • 18144401714 scopus 로고    scopus 로고
    • Critical evaluation of extended Kalman filtering and moving horizon estimation
    • Haseltine EL, Rawlings JB. Critical evaluation of extended Kalman filtering and moving horizon estimation. Ind Eng Chem Res. 2005; 44: 2451-2460.
    • (2005) Ind Eng Chem Res. , vol.44 , pp. 2451-2460
    • Haseltine, E.L.1    Rawlings, J.B.2
  • 46
    • 0025448958 scopus 로고
    • A kinetic model for industrial gas-phase ethylene copolymerization
    • McAuley KB, MacGregor AE, Hamielec AE. A kinetic model for industrial gas-phase ethylene copolymerization. AIChE J. 1990; 36: 837-850.
    • (1990) AIChE J. , vol.36 , pp. 837-850
    • Mcauley, K.B.1    Macgregor, A.E.2    Hamielec, A.E.3
  • 49
    • 0003568337 scopus 로고
    • Numerical Solution of Stochastic Differential Equations
    • Berlin: Springer Verlag
    • Kloeden PE, Platen E. Numerical Solution of Stochastic Differential Equations. Berlin: Springer Verlag, 1992.
    • (1992)
    • Kloeden, P.E.1    Platen, E.2
  • 50
    • 0003803467 scopus 로고
    • Spectral Analysis and Its Applications
    • 500 Sansome Street, San Fransisco, California: Holden-Day
    • Jenkins GM, Watts DG. Spectral Analysis and Its Applications. 500 Sansome Street, San Fransisco, California: Holden-Day, 1968.
    • (1968)
    • Jenkins, G.M.1    Watts, D.G.2
  • 51
    • 0003626635 scopus 로고    scopus 로고
    • Mathematical Control Theory
    • 2nd ed. New York: Springer-Verlag
    • Sontag ED. Mathematical Control Theory, 2nd ed. New York: Springer-Verlag, 1998.
    • (1998)
    • Sontag, E.D.1
  • 52
    • 0001152229 scopus 로고
    • In: Leondes CT editor. Advances in Control Systems, New York: Academic Press
    • Schmidt SF. Application of state-space methods to navigation problems. In: Leondes CT editor. Advances in Control Systems, Vol. 3. New York: Academic Press, 1966: 293-340.
    • (1966) Application of state-space methods to navigation problems , vol.3 , pp. 293-340
    • Schmidt, S.F.1
  • 53
    • 0003428481 scopus 로고    scopus 로고
    • Introduction to Random Signals and Applied Kalman Filtering
    • New York, Wiley
    • Brown RG, Hwang PYC. Introduction to Random Signals and Applied Kalman Filtering. New York, Wiley, 1997.
    • (1997)
    • Brown, R.G.1    Hwang, P.Y.C.2
  • 54
    • 0004043110 scopus 로고    scopus 로고
    • The Global Positioning System and Inertial Navigation
    • McGraw-Hill
    • Farrell JA, Barth M. The Global Positioning System and Inertial Navigation. McGraw-Hill, 1998.
    • (1998)
    • Farrell, J.A.1    Barth, M.2
  • 55
    • 70349676363 scopus 로고    scopus 로고
    • Aided Navigation: GPS with High Rate Sensors
    • McGraw-Hill
    • Farrell JA. Aided Navigation: GPS with High Rate Sensors. McGraw-Hill, 2008.
    • (2008)
    • Farrell, J.A.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.