메뉴 건너뛰기




Volumn 27, Issue 2, 2011, Pages 188-200

A consistent algorithm to solve Lasso, elastic-net and Tikhonov regularization

Author keywords

Consistent estimator; Learning theory; Regularization; Sparsity

Indexed keywords

COMPUTATIONAL COMPLEXITY; NUMERICAL ANALYSIS;

EID: 79952441863     PISSN: 0885064X     EISSN: 10902708     Source Type: Journal    
DOI: 10.1016/j.jco.2011.01.003     Document Type: Article
Times cited : (7)

References (27)
  • 1
    • 84888203819 scopus 로고    scopus 로고
    • Honest variable selection in linear and logistic regression models via l1 and l1+l2 penalization
    • F. Bunea Honest variable selection in linear and logistic regression models via l 1 and l 1 + l 2 penalization Electron. J. Stat. 2 2008 1153 1197
    • (2008) Electron. J. Stat. , vol.2 , pp. 1153-1197
    • Bunea, F.1
  • 2
    • 34548275795 scopus 로고    scopus 로고
    • The Dantzig selector: Statistical estimation when p is much larger than n
    • E. Candes, and T. Tao The Dantzig selector: statistical estimation when p is much larger than n Ann. Statist. 35 6 2007 2313 2351
    • (2007) Ann. Statist. , vol.35 , Issue.6 , pp. 2313-2351
    • Candes, E.1    Tao, T.2
  • 4
    • 30844438177 scopus 로고    scopus 로고
    • Signal recovery by proximal forward-backward splitting
    • DOI 10.1137/050626090
    • P.L. Combettes, and V.R. Wajs Signal recovery by proximal forwardbackward splitting Multiscale Model. Simul. 4 4 2005 1168 1200 (electronic) (Pubitemid 44932287)
    • (2005) Multiscale Modeling and Simulation , vol.4 , Issue.4 , pp. 1168-1200
    • Combettes, P.L.1    Wajs, V.R.2
  • 5
    • 0036436325 scopus 로고    scopus 로고
    • Best choices for regularization parameters in learning theory: On the bias-variance problem
    • F. Cucker, and S. Smale Best choices for regularization parameters in learning theory: on the bias-variance problem Found. Comput. Math. 2 4 2002 413 428
    • (2002) Found. Comput. Math. , vol.2 , Issue.4 , pp. 413-428
    • Cucker, F.1    Smale, S.2
  • 6
    • 0036071370 scopus 로고    scopus 로고
    • On the mathematical foundations of learning
    • F. Cucker, and S. Smale On the mathematical foundations of learning Bull. Amer. Math. Soc. (NS) 39 1 2002 1 49 (electronic)
    • (2002) Bull. Amer. Math. Soc. (NS) , vol.39 , Issue.1 , pp. 1-49
    • Cucker, F.1    Smale, S.2
  • 7
    • 7044231546 scopus 로고    scopus 로고
    • An iterative thresholding algorithm for linear inverse problems with a sparsity constraint
    • DOI 10.1002/cpa.20042
    • I. Daubechies, M. Defrise, and C. De Mol An iterative thresholding algorithm for linear inverse problems with a sparsity constraint Comm. Pure Appl. Math. 57 2004 1413 1457 (Pubitemid 39427442)
    • (2004) Communications on Pure and Applied Mathematics , vol.57 , Issue.11 , pp. 1413-1457
    • Daubechies, I.1    Defrise, M.2    De Mol, C.3
  • 8
    • 62549127689 scopus 로고    scopus 로고
    • Elastic-net regularization in learning theory
    • C. De Mol, E. De Vito, and L. Rosasco Elastic-net regularization in learning theory J. Complexity 25 2 2009 201 230
    • (2009) J. Complexity , vol.25 , Issue.2 , pp. 201-230
    • De Mol, C.1    De Vito, E.2    Rosasco, L.3
  • 9
    • 79952439810 scopus 로고    scopus 로고
    • Adaptive kernel methods via the balancing principle
    • E. De Vito, S. Pereverzev, and L. Rosasco Adaptive kernel methods via the balancing principle Found. Comput. Math. 10 1 2010 67 91
    • (2010) Found. Comput. Math. , vol.10 , Issue.1 , pp. 67-91
    • De Vito, E.1    Pereverzev, S.2    Rosasco, L.3
  • 13
    • 57349127864 scopus 로고    scopus 로고
    • Accelerated projected gradient methods for linear inverse problems with sparsity constraints
    • M. Fornasier, I. Daubechies, and I. Loris Accelerated projected gradient methods for linear inverse problems with sparsity constraints J. Fourier Anal. Appl. 2008
    • (2008) J. Fourier Anal. Appl.
    • Fornasier, M.1    Daubechies, I.2    Loris, I.3
  • 16
    • 0001638327 scopus 로고
    • Optimum bounds for the distributions of martingales in Banach spaces
    • I. Pinelis Optimum bounds for the distributions of martingales in Banach spaces Ann. Probab. 22 4 1994 1679 1706
    • (1994) Ann. Probab. , vol.22 , Issue.4 , pp. 1679-1706
    • Pinelis, I.1
  • 17
    • 33646361736 scopus 로고    scopus 로고
    • Correction: "optimum bounds for the distributions of martingales in Banach spaces"
    • I. Pinelis Correction: "Optimum bounds for the distributions of martingales in Banach spaces" Ann. Probab. 27 4 1999 2119
    • (1999) Ann. Probab. , vol.27 , Issue.4 , pp. 2119
    • Pinelis, I.1
  • 18
    • 0242705996 scopus 로고    scopus 로고
    • The mathematics of learning: Dealing with data
    • T. Poggio, and S. Smale The mathematics of learning: dealing with data Notices Amer. Math. Soc. 50 5 2003 537 544
    • (2003) Notices Amer. Math. Soc. , vol.50 , Issue.5 , pp. 537-544
    • Poggio, T.1    Smale, S.2
  • 19
    • 0000819314 scopus 로고
    • Integral functionals, normal integrands and measurable selections
    • Springer Berlin
    • R.T. Rockafellar Integral functionals, normal integrands and measurable selections Nonlinear Operators and the Calculus of Variations Summer School, Univ. Libre Bruxelles, Brussels 1975 Lecture Notes in Math. vol. 543 1976 Springer Berlin 157 207
    • (1976) Lecture Notes in Math. , vol.543 , pp. 157-207
    • Rockafellar, R.T.1
  • 21
    • 0001287271 scopus 로고    scopus 로고
    • Regression shrinkage and selection via the Lasso
    • R. Tibshirani Regression shrinkage and selection via the Lasso J. Roy. Statist. Soc. Ser. B 56 1996 267 288
    • (1996) J. Roy. Statist. Soc. Ser. B , vol.56 , pp. 267-288
    • Tibshirani, R.1
  • 22
    • 78649495105 scopus 로고    scopus 로고
    • Elastic-net regularization:iterative algorithms and asymptotic behavior of solutions
    • V. Umanit, and S. Villa Elastic-net regularization:iterative algorithms and asymptotic behavior of solutions Numer. Funct. Anal. Optim. 31 12 2010 1406 1432
    • (2010) Numer. Funct. Anal. Optim. , vol.31 , Issue.12 , pp. 1406-1432
    • Umanit, V.1    Villa, S.2
  • 23
    • 51049121146 scopus 로고    scopus 로고
    • High-dimensional generalized linear models and the Lasso
    • S.A. Van de Geer High-dimensional generalized linear models and the Lasso Ann. Statist. 36 2 2008 614 645
    • (2008) Ann. Statist. , vol.36 , Issue.2 , pp. 614-645
    • Van De Geer, S.A.1
  • 26


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.