메뉴 건너뛰기




Volumn 23, Issue SUPPL.16, 2010, Pages

Phosphate transport in the kidney

Author keywords

Kidney; Parathyroid hormone; Proximal tubules; Regulation; Sodium dependent phosphate transport

Indexed keywords

DOPAMINE; PARATHYROID HORMONE; PHOSPHATE; PHOSPHOPROTEIN; SODIUM HYDROGEN EXCHANGER REGULATORY FACTOR; SODIUM PHOSPHATE COTRANSPORTER; SODIUM PROTON EXCHANGE PROTEIN; SODIUM-HYDROGEN EXCHANGER REGULATORY FACTOR;

EID: 79952277289     PISSN: 11218428     EISSN: 17246059     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (31)

References (62)
  • 1
    • 77950297228 scopus 로고    scopus 로고
    • Recent advances in renal phosphate handling
    • Farrow EG, White KE. Recent advances in renal phosphate handling. Nature Rev Nephrol. 2010;6:207-217.
    • (2010) Nature Rev Nephrol , vol.6 , pp. 207-217
    • Farrow, E.G.1    White, K.E.2
  • 2
    • 84875281278 scopus 로고    scopus 로고
    • Genetic defects in renal phosphate handling
    • Lifton RP, Somlo S, Giebisch G, Seldin DW, eds., Amsterdam: Elsevier
    • Wagner CA, Hernando N, Forster I, Biber J, Murer H. Genetic defects in renal phosphate handling. In: Lifton RP, Somlo S, Giebisch G, Seldin DW, eds. Genetic diseases of the kidney. Amsterdam: Elsevier; 2009:715-736.
    • (2009) Genetic Diseases of the Kidney , pp. 715-736
    • Wagner, C.A.1    Hernando, N.2    Forster, I.3    Biber, J.4    Murer, H.5
  • 3
    • 0022460725 scopus 로고
    • Cellular mechanisms of inorganic phosphate transport in kidney
    • Gmaj P, Murer H. Cellular mechanisms of inorganic phosphate transport in kidney. Physiol Rev. 1986;66:36-70.
    • (1986) Physiol Rev , vol.66 , pp. 36-70
    • Gmaj, P.1    Murer, H.2
  • 4
    • 1242295189 scopus 로고    scopus 로고
    • Organic anion transport is the primary function of the SLC17/type I phosphate transporter family
    • Reimer RJ, Edwards RH. Organic anion transport is the primary function of the SLC17/type I phosphate transporter family. Pflügers Arch. 2004;447:629-635.
    • (2004) Pflügers Arch , vol.447 , pp. 629-635
    • Reimer, R.J.1    Edwards, R.H.2
  • 5
    • 1242272738 scopus 로고    scopus 로고
    • The SLC20 family of proteins: Dual functions as sodium-phosphate cotransporters and viral receptors
    • Collins JF, Bai L, Ghishan FK. The SLC20 family of proteins: dual functions as sodium-phosphate cotransporters and viral receptors. Pflügers Arch. 2004;447:647-652.
    • (2004) Pflügers Arch , vol.447 , pp. 647-652
    • Collins, J.F.1    Bai, L.2    Ghishan, F.K.3
  • 6
    • 65949096839 scopus 로고    scopus 로고
    • The Na-Pi cotransporter PiT-2 (SLC20A2) is expressed in the apical membrane of rat proximal tubules and regulated by dietary Pi
    • Villa-Bellosta R, Ravera S, Sorribas V, et al. The Na-Pi cotransporter PiT-2 (SLC20A2) is expressed in the apical membrane of rat proximal tubules and regulated by dietary Pi. Am J Physiol. 2008;296:F691-F699.
    • (2008) Am J Physiol , vol.296
    • Villa-Bellosta, R.1    Ravera, S.2    Sorribas, V.3
  • 7
    • 0031755898 scopus 로고    scopus 로고
    • Differential expression, abundance, and regulation of Na+-phosphate cotransporter genes in murine kidney
    • Tenenhouse HS, Roy S, Martel J, Gauthier C. Differential expression, abundance, and regulation of Na+-phosphate cotransporter genes in murine kidney. Am J Physiol. 1998;275:F527-F534.
    • (1998) Am J Physiol , vol.275
    • Tenenhouse, H.S.1    Roy, S.2    Martel, J.3    Gauthier, C.4
  • 8
    • 1242317643 scopus 로고    scopus 로고
    • The sodium phosphate cotransporter family SLC34
    • Murer H, Forster I, Biber J. The sodium phosphate cotransporter family SLC34. Pflügers Arch. 2004;447:763-767.
    • (2004) Pflügers Arch , vol.447 , pp. 763-767
    • Murer, H.1    Forster, I.2    Biber, J.3
  • 9
    • 77949885535 scopus 로고    scopus 로고
    • Compensatory regulation of the sodium/phosphate cotransporters NaPi-IIc (SLC34A3) and Pit-2 (SLC20A2) during Pi deprivation and acidosis
    • Villa-Bellosta R, Sorribas V. Compensatory regulation of the sodium/phosphate cotransporters NaPi-IIc (SLC34A3) and Pit-2 (SLC20A2) during Pi deprivation and acidosis. Pflügers Arch. 2010;459:499-508.
    • (2010) Pflügers Arch , vol.459 , pp. 499-508
    • Villa-Bellosta, R.1    Sorribas, V.2
  • 10
    • 0032574725 scopus 로고    scopus 로고
    • Targeted inactivation of Npt2 in mice leads to severe renal phosphate wasting, hypercalcuria, and skeletal abnormalities
    • Beck L, Karaplis AC, Amizuka N, Hewson AS, Ozawa H, Tenenhouse HS. Targeted inactivation of Npt2 in mice leads to severe renal phosphate wasting, hypercalcuria, and skeletal abnormalities. Proc Natl Acad Sci U S A. 1998;95:5372-5377.
    • (1998) Proc Natl Acad Sci U S A , vol.95 , pp. 5372-5377
    • Beck, L.1    Karaplis, A.C.2    Amizuka, N.3    Hewson, A.S.4    Ozawa, H.5    Tenenhouse, H.S.6
  • 11
    • 0242497210 scopus 로고    scopus 로고
    • Differential effects of Npt2a gene ablation and X-linked Hyp mutation on renal expression of Npt2c
    • Tenenhouse HS, Martel J, Gauthier C, Segawa H, Miyamoto K. Differential effects of Npt2a gene ablation and X-linked Hyp mutation on renal expression of Npt2c. Am J Physiol. 2003;285:F1271-F1278.
    • (2003) Am J Physiol , vol.285
    • Tenenhouse, H.S.1    Martel, J.2    Gauthier, C.3    Segawa, H.4    Miyamoto, K.5
  • 12
    • 33745072444 scopus 로고    scopus 로고
    • NPT2a gene variation in calcium nephrolithiasis with renal phosphate leak
    • Lapointe J-Y, Tessier J, Paquette Y, et al. NPT2a gene variation in calcium nephrolithiasis with renal phosphate leak. Kidney Int. 2006;69:2261-2267.
    • (2006) Kidney Int , vol.69 , pp. 2261-2267
    • Lapointe, J.-Y.1    Tessier, J.2    Paquette, Y.3
  • 13
    • 77950250437 scopus 로고    scopus 로고
    • A loss of function mutation in NaPi-IIa and renal Fanconi's syndrome
    • Magen D, Berger L, Coady MJ, et al. A loss of function mutation in NaPi-IIa and renal Fanconi's syndrome. N Engl J Med. 2010;362:1102-1109.
    • (2010) N Engl J Med , vol.362 , pp. 1102-1109
    • Magen, D.1    Berger, L.2    Coady, M.J.3
  • 14
    • 0037205468 scopus 로고    scopus 로고
    • Growth-related renal type II Na/Pi cotransporter
    • Segawa H, Kaneko I, Takahashi A, et al. Growth-related renal type II Na/Pi cotransporter. J Biol Chem. 2002;277:19665-19672.
    • (2002) J Biol Chem , vol.277 , pp. 19665-19672
    • Segawa, H.1    Kaneko, I.2    Takahashi, A.3
  • 15
    • 58149508324 scopus 로고    scopus 로고
    • Type IIc sodiumdependent phosphate transporter regulates calcium metabolism
    • Segawa H, Onitsuka A, Kuwahata M, et al. Type IIc sodiumdependent phosphate transporter regulates calcium metabolism. J Am Soc Nephrol. 2009;20:104-113.
    • (2009) J Am Soc Nephrol , vol.20 , pp. 104-113
    • Segawa, H.1    Onitsuka, A.2    Kuwahata, M.3
  • 16
    • 31544481921 scopus 로고    scopus 로고
    • SLC34A3 mutations in patients with heredi-tary hypophosphatemic rickets with hypercalciuria predict a key role for the sodium-phosphate cotransporter NaPi-IIc in maintaining phosphate homeostasis
    • Bergwitz C, Roslin NM, Tieder M, et al. SLC34A3 mutations in patients with heredi-tary hypophosphatemic rickets with hypercalciuria predict a key role for the sodium-phosphate cotransporter NaPi-IIc in maintaining phosphate homeostasis. Am J Hum Genet. 2006;78:179-192.
    • (2006) Am J Hum Genet , vol.78 , pp. 179-192
    • Bergwitz, C.1    Roslin, N.M.2    Tieder, M.3
  • 17
    • 31544460435 scopus 로고    scopus 로고
    • Hereditary hypophosphatemic rickets with hypercalciuria is caused by mutations in the sodium-phosphate cotransporter gene SLC34A3
    • Lorenz-Depiereux B, Benet-Pages A, Eckstein G, et al. Hereditary hypophosphatemic rickets with hypercalciuria is caused by mutations in the sodium-phosphate cotransporter gene SLC34A3. Am J Hum Genet. 2006;78:193-201.
    • (2006) Am J Hum Genet , vol.78 , pp. 193-201
    • Lorenz-Depiereux, B.1    Benet-Pages, A.2    Eckstein, G.3
  • 18
    • 52449123460 scopus 로고    scopus 로고
    • A novel missense mutation in SLC34A3 that causes hereditary hypophosphatemic rickets with hypercalciuria in humans identifies threonine 137 as an important determinant of sodium-phosphate cotransport in NaPi-IIc
    • Jaureguiberry G, Carpenter TO, Forman S, Jüppner H, Bergwitz C. A novel missense mutation in SLC34A3 that causes hereditary hypophosphatemic rickets with hypercalciuria in humans identifies threonine 137 as an important determinant of sodium-phosphate cotransport in NaPi-IIc. Am J Physiol. 2008;295:F371-F379.
    • (2008) Am J Physiol , vol.295
    • Jaureguiberry, G.1    Carpenter, T.O.2    Forman, S.3    Jüppner, H.4    Bergwitz, C.5
  • 19
    • 34548628446 scopus 로고    scopus 로고
    • Phosphate transporters: A tale of two solute carrier families
    • Virkki LV, Biber J, Murer H, Forster IC. Phosphate transporters: a tale of two solute carrier families. Am J Physiol. 2007;293:F643-F654.
    • (2007) Am J Physiol , vol.293
    • Virkki, L.V.1    Biber, J.2    Murer, H.3    Forster, I.C.4
  • 20
    • 24644458169 scopus 로고    scopus 로고
    • Renouncing electroneutrality is not free of charge: Switching on electrogenicity in a Na+-coupled phosphate cotransporter
    • Bacconi A, Virkki LV, Biber J, Murer H, Forster IC. Renouncing electroneutrality is not free of charge: switching on electrogenicity in a Na+-coupled phosphate cotransporter. Proc Natl Acad Sci U S A. 2005;102:12606-12611.
    • (2005) Proc Natl Acad Sci U S A , vol.102 , pp. 12606-12611
    • Bacconi, A.1    Virkki, L.V.2    Biber, J.3    Murer, H.4    Forster, I.C.5
  • 21
    • 0034714238 scopus 로고    scopus 로고
    • The functional unit of the renal type IIa Na+/Pi cotransporter is a monomer
    • Köhler K, Forster IC, Lambert G, Biber J, Murer H. The functional unit of the renal type IIa Na+/Pi cotransporter is a monomer. J Biol Chem. 2000;275:26113-26120.
    • (2000) J Biol Chem , vol.275 , pp. 26113-26120
    • Köhler, K.1    Forster, I.C.2    Lambert, G.3    Biber, J.4    Murer, H.5
  • 22
    • 84875307578 scopus 로고    scopus 로고
    • Monitoring proteinprotein interactions between the mammalian renal epithelial integral membrane proteins and their PDZ interacting partners using the type II split ubiquitin membrane yeast twohybrid system
    • Gisler SM, Kittanakom S, Fuster D, et al. Monitoring proteinprotein interactions between the mammalian renal epithelial integral membrane proteins and their PDZ interacting partners using the type II split ubiquitin membrane yeast twohybrid system. Mol Cell Proteomics. 2008;7:1326-1377.
    • (2008) Mol Cell Proteomics , vol.7 , pp. 1326-1377
    • Gisler, S.M.1    Kittanakom, S.2    Fuster, D.3
  • 23
    • 34547735935 scopus 로고    scopus 로고
    • Deciphering PiT transport kinetics and substrate specificity using electrophysiology and flux measurements
    • Ravera S, Virkki LV, Murer H, Forster IC. Deciphering PiT transport kinetics and substrate specificity using electrophysiology and flux measurements. Am J Physiol. 2007;293:C606-C620.
    • (2007) Am J Physiol , vol.293
    • Ravera, S.1    Virkki, L.V.2    Murer, H.3    Forster, I.C.4
  • 24
    • 17644417075 scopus 로고    scopus 로고
    • Substrate interactions in the human type IIa sodium-phosphate cotransporter (Na-Pi-IIa)
    • Virkki LV, Forster IC, Biber J, Murer H. Substrate interactions in the human type IIa sodium-phosphate cotransporter (Na-Pi-IIa). Am J Physiol. 2005;288:F969-F981.
    • (2005) Am J Physiol , vol.288
    • Virkki, L.V.1    Forster, I.C.2    Biber, J.3    Murer, H.4
  • 25
    • 56649115974 scopus 로고    scopus 로고
    • Renal phosphaturia during metabolic acidosis revisited: Molecular mechanisms for decreased renal phosphate reabsorption
    • Nowik M, Picard N, Stange G, et al. Renal phosphaturia during metabolic acidosis revisited: molecular mechanisms for decreased renal phosphate reabsorption. Pflügers Arch. 2008;457:539-549.
    • (2008) Pflügers Arch , vol.457 , pp. 539-549
    • Nowik, M.1    Picard, N.2    Stange, G.3
  • 26
    • 77951920659 scopus 로고    scopus 로고
    • Regulation of phosphate homeostasis by PTH, vitamin D, and FGF23
    • Bergwitz C, Jüppner H. Regulation of phosphate homeostasis by PTH, vitamin D, and FGF23. Ann Rev Med. 2010;61:91-104.
    • (2010) Ann Rev Med , vol.61 , pp. 91-104
    • Bergwitz, C.1    Jüppner, H.2
  • 27
    • 58149109303 scopus 로고    scopus 로고
    • Recent advances in the renal-skeletalgut axis that controls phosphate homeostasis
    • Kiela PR, Ghishan FK. Recent advances in the renal-skeletalgut axis that controls phosphate homeostasis. Lab Invest. 2009;89:7-14.
    • (2009) Lab Invest , vol.89 , pp. 7-14
    • Kiela, P.R.1    Ghishan, F.K.2
  • 28
    • 0033775213 scopus 로고    scopus 로고
    • Proximal tubular phosphate reabsorption: Molecular mechanisms
    • Murer H, Hernando N, Forster I, Biber J. Proximal tubular phosphate reabsorption: molecular mechanisms. Physiol Rev. 2000;80:1373-1409.
    • (2000) Physiol Rev , vol.80 , pp. 1373-1409
    • Murer, H.1    Hernando, N.2    Forster, I.3    Biber, J.4
  • 29
    • 33750203846 scopus 로고    scopus 로고
    • Proximal tubular handling of phosphate: A molecular perspective
    • Forster IC, Hernando N, Biber J, Murer H. Proximal tubular handling of phosphate: a molecular perspective. Kidney Int. 2006;70:1548-1559.
    • (2006) Kidney Int , vol.70 , pp. 1548-1559
    • Forster, I.C.1    Hernando, N.2    Biber, J.3    Murer, H.4
  • 30
    • 20144367104 scopus 로고    scopus 로고
    • Activation of dopamine D1-like receptors induces acute internalization of the renal Na/phosphate cotransporter NaPi-IIa in mouse kidney and OK cells
    • Bacic D, Capuano P, Baum M, et al. Activation of dopamine D1-like receptors induces acute internalization of the renal Na/phosphate cotransporter NaPi-IIa in mouse kidney and OK cells. Am J Physiol. 2005;288:F740-F747.
    • (2005) Am J Physiol , vol.288
    • Bacic, D.1    Capuano, P.2    Baum, M.3
  • 31
    • 33846261191 scopus 로고    scopus 로고
    • Parathyroid hormone-dependent endocytosis of renal type IIc cotransporter
    • Segawa H, Yamanaka S, Onizsuka A, et al. Parathyroid hormone-dependent endocytosis of renal type IIc cotransporter. Am J Physiol Renal Physiol. 2007;292:F395-F403.
    • (2007) Am J Physiol Renal Physiol , vol.292
    • Segawa, H.1    Yamanaka, S.2    Onizsuka, A.3
  • 32
    • 0034076355 scopus 로고    scopus 로고
    • Luminal and contraluminal action of 1-34 and 3-34 PTH peptides on renal type IIa Na/Pi-cotransporter
    • Traebert M, Volkl H, Biber J, Murer H, Kaislling B. Luminal and contraluminal action of 1-34 and 3-34 PTH peptides on renal type IIa Na/Pi-cotransporter. Am J Physiol. 2000;278:F792-F798.
    • (2000) Am J Physiol , vol.278
    • Traebert, M.1    Volkl, H.2    Biber, J.3    Murer, H.4    Kaislling, B.5
  • 33
  • 34
    • 33646009701 scopus 로고    scopus 로고
    • The association of NHERF adaptor proteins with G protein-coupled receptors and receptor tyrosine kinases
    • Weinman EJ, Hall RA, Friedman PA, Liu-Chen LY, Shenolikar S. The association of NHERF adaptor proteins with G protein-coupled receptors and receptor tyrosine kinases. Ann Rev Physiol. 2006;68:491-505.
    • (2006) Ann Rev Physiol , vol.68 , pp. 491-505
    • Weinman, E.J.1    Hall, R.A.2    Friedman, P.A.3    Liu-Chen, L.Y.4    Shenolikar, S.5
  • 35
    • 33847043099 scopus 로고    scopus 로고
    • Defective coupling of apical PTH receptors to phospholipase C prevents internalization of the Na-phosphate cotransporter NaPi-IIa in NHERF1 deficient mice
    • Capuano P, Bacic D, Roos M, et al. Defective coupling of apical PTH receptors to phospholipase C prevents internalization of the Na-phosphate cotransporter NaPi-IIa in NHERF1 deficient mice. Am J Physiol. 2007;292:C927-C934.
    • (2007) Am J Physiol , vol.292
    • Capuano, P.1    Bacic, D.2    Roos, M.3
  • 36
    • 77951527059 scopus 로고    scopus 로고
    • Sodium-hydrogen exchanger regulatory factor-1 (NHERF-1) transduces signals that mediate dopamine inhibition of sodium-phosphate co-transport in mouse kidney
    • Weinman EJ, Biswas R, Steplock D, Douglas TS, Cunningham R, Shenolikar S. Sodium-hydrogen exchanger regulatory factor-1 (NHERF-1) transduces signals that mediate dopamine inhibition of sodium-phosphate co-transport in mouse kidney. J Biol Chem. 2010;285:13454-13460.
    • (2010) J Biol Chem , vol.285 , pp. 13454-13460
    • Weinman, E.J.1    Biswas, R.2    Steplock, D.3    Douglas, T.S.4    Cunningham, R.5    Shenolikar, S.6
  • 37
    • 71549134911 scopus 로고    scopus 로고
    • PTH transiently increases the percent mobile fraction of Npt2a in OK cells as determined by FRAP
    • Weinman EJ, Steplock D, Cha B, et al. PTH transiently increases the percent mobile fraction of Npt2a in OK cells as determined by FRAP. Am J Physiol Renal Physiol. 2009;297:F1560-F1565.
    • (2009) Am J Physiol Renal Physiol , vol.297
    • Weinman, E.J.1    Steplock, D.2    Cha, B.3
  • 39
  • 40
    • 0037015060 scopus 로고    scopus 로고
    • PDZ-domain interactions and apical expression of type IIa Na/P(i) cotransporters
    • Hernando N, Déliot N, Gisler SM, et al. PDZ-domain interactions and apical expression of type IIa Na/P(i) cotransporters. Proc Natl Acad Sci U S A. 2002;99:11957-11962.
    • (2002) Proc Natl Acad Sci U S A , vol.99 , pp. 11957-11962
    • Hernando, N.1    Déliot, N.2    Gisler, S.M.3
  • 41
    • 0037143761 scopus 로고    scopus 로고
    • Targeted disruption of the mouse gene encoding a PDZ domain containing protein adaptor, NHERF-1, promotes Npt2 internalization and renal phosphate wasting
    • Shenolikar S, Voltz JW, Minkoff CM, Wade J, Weinman EJ. Targeted disruption of the mouse gene encoding a PDZ domain containing protein adaptor, NHERF-1, promotes Npt2 internalization and renal phosphate wasting. Proc Natl Acad Sci U S A. 2002;99:11470-11475.
    • (2002) Proc Natl Acad Sci U S A , vol.99 , pp. 11470-11475
    • Shenolikar, S.1    Voltz, J.W.2    Minkoff, C.M.3    Wade, J.4    Weinman, E.J.5
  • 42
  • 43
    • 20144385354 scopus 로고    scopus 로고
    • Expression and regulation of the renal Na/phosphate cotransporter NaPi-IIa in a mouse model deficient for the PDZ protein PDZK1
    • Capuano P, Bacic D, Stange G, et al. Expression and regulation of the renal Na/phosphate cotransporter NaPi-IIa in a mouse model deficient for the PDZ protein PDZK1. Pflügers Arch. 2005;499:392-402.
    • (2005) Pflügers Arch , vol.499 , pp. 392-402
    • Capuano, P.1    Bacic, D.2    Stange, G.3
  • 44
    • 21144450255 scopus 로고    scopus 로고
    • Parathyroid hormone treatment induces dissociation of type IIa Na-Pi cotransporter-Na/H exchanger regulatory factor-1 complexes
    • Deliot N, Hernando N, Horst-Liu Z, et al. Parathyroid hormone treatment induces dissociation of type IIa Na-Pi cotransporter-Na/H exchanger regulatory factor-1 complexes. Am J Physiol. 2005;289:C159-C167.
    • (2005) Am J Physiol , vol.289
    • Deliot, N.1    Hernando, N.2    Horst-Liu, Z.3
  • 45
    • 36048958880 scopus 로고    scopus 로고
    • Parathyroid hormone inhibits renal phosphate transport by phosphorylation of serine 77 of sodium-hydrogen exchanger regulatory factor-1
    • Weinman EJ, Biswas RS, Peng G, et al. Parathyroid hormone inhibits renal phosphate transport by phosphorylation of serine 77 of sodium-hydrogen exchanger regulatory factor-1. J Clin Invest. 2007;117:3412-3420.
    • (2007) J Clin Invest , vol.117 , pp. 3412-3420
    • Weinman, E.J.1    Biswas, R.S.2    Peng, G.3
  • 46
    • 73449096477 scopus 로고    scopus 로고
    • PTH-induced internalization of apical membrane NaPi2a: Role of actin and myosin VI
    • Blaine J, Okamura K, Giral H, et al. PTH-induced internalization of apical membrane NaPi2a: role of actin and myosin VI. Am J Physiol. 2009;297:C1339-C1346.
    • (2009) Am J Physiol , vol.297
    • Blaine, J.1    Okamura, K.2    Giral, H.3
  • 47
    • 59849097605 scopus 로고    scopus 로고
    • Novel mechanisms in the regulation of phosphorus homeostasis
    • Berndt T, Kumar R. Novel mechanisms in the regulation of phosphorus homeostasis. Physiology. 2009;24:17-25.
    • (2009) Physiology , vol.24 , pp. 17-25
    • Berndt, T.1    Kumar, R.2
  • 49
    • 3042634460 scopus 로고    scopus 로고
    • Transgenic mice expressing fibroblast growth factor 23 under the control of the alpha1(I) collagen promoter exhibit growth retardation, osteomalacia, and disturbed phosphate homeostasis
    • Larsson T, Marsell R, Schipani E, et al. Transgenic mice expressing fibroblast growth factor 23 under the control of the alpha1(I) collagen promoter exhibit growth retardation, osteomalacia, and disturbed phosphate homeostasis. Endocrinology. 2004;145:3087-3094.
    • (2004) Endocrinology , vol.145 , pp. 3087-3094
    • Larsson, T.1    Marsell, R.2    Schipani, E.3
  • 50
    • 1642416884 scopus 로고    scopus 로고
    • Targeted ablation of Fgf23 demonstrates an essential physiological role of FGF23 in phosphate and vitamin D metabolism
    • Shimada T, Kakitani M, Yamazaki Y, et al. Targeted ablation of Fgf23 demonstrates an essential physiological role of FGF23 in phosphate and vitamin D metabolism. J Clin Invest. 2004;113:561-568.
    • (2004) J Clin Invest , vol.113 , pp. 561-568
    • Shimada, T.1    Kakitani, M.2    Yamazaki, Y.3
  • 51
    • 77952696793 scopus 로고    scopus 로고
    • Phosphaturic action of fibroblast growth factor 23 in Npt2 null mice
    • Tomoe Y, Segawa H, Shiozawa K, et al. Phosphaturic action of fibroblast growth factor 23 in Npt2 null mice. Am J Physiol Renal Physiol. 2010;298:F1341-F1350.
    • (2010) Am J Physiol Renal Physiol , vol.298
    • Tomoe, Y.1    Segawa, H.2    Shiozawa, K.3
  • 52
    • 68049085792 scopus 로고    scopus 로고
    • FGF23 decreases renal NaPi-2a and NaPi-2c expression and induces hypophosphatemia in vivo predominantly via FGF receptor 1
    • Gattineni J, Bates C, Twombley K, et al. FGF23 decreases renal NaPi-2a and NaPi-2c expression and induces hypophosphatemia in vivo predominantly via FGF receptor 1. Am J Physiol. 2009;297:F282-F291.
    • (2009) Am J Physiol , vol.297
    • Gattineni, J.1    Bates, C.2    Twombley, K.3
  • 53
    • 77951259224 scopus 로고    scopus 로고
    • Baum M. Regulation of phosphate transport by fibroblast growth 23 (FGF23): Implications for disorders of phosphate metabolism
    • Gattineni J, Baum M. Regulation of phosphate transport by fibroblast growth 23 (FGF23): Implications for disorders of phosphate metabolism. Pediatr Nephrol. 2010;25:591-601.
    • (2010) Pediatr Nephrol , vol.25 , pp. 591-601
    • Gattineni, J.1
  • 54
    • 33845631059 scopus 로고    scopus 로고
    • Klotho converts canonical FGF receptor into a specific receptor for FGF23
    • Urakawa I, Yamazaki Y, Shimada T, et al. Klotho converts canonical FGF receptor into a specific receptor for FGF23. Nature. 2006;444:770-774.
    • (2006) Nature , vol.444 , pp. 770-774
    • Urakawa, I.1    Yamazaki, Y.2    Shimada, T.3
  • 55
    • 33846867744 scopus 로고    scopus 로고
    • Correlation between hyperphosphatemia and type II Na-Pi cotransporter activity in klotho mice
    • Segawa H, Yamanaka S, Ohno Y, et al. Correlation between hyperphosphatemia and type II Na-Pi cotransporter activity in klotho mice. Am J Physiol. 2007;292:F769-F779.
    • (2007) Am J Physiol , vol.292
    • Segawa, H.1    Yamanaka, S.2    Ohno, Y.3
  • 56
    • 65649103814 scopus 로고    scopus 로고
    • Initial FGF23-mediated signaling occurs in the distal convoluted tubule
    • Farrow EG, Davis SI, Summers LJ, White KE. Initial FGF23-mediated signaling occurs in the distal convoluted tubule. J Am Soc Nephrol. 2009;20:955-960.
    • (2009) J Am Soc Nephrol , vol.20 , pp. 955-960
    • Farrow, E.G.1    Davis, S.I.2    Summers, L.J.3    White, K.E.4
  • 57
    • 0037008747 scopus 로고    scopus 로고
    • Fibroblast growth factor (FGF)-23 inhibits renal phosphate reabsorption by activation of the mitogen-activated protein kinase pathway
    • Yamashita T, Konishi M, Miyake A, Inui K, Itoh N. Fibroblast growth factor (FGF)-23 inhibits renal phosphate reabsorption by activation of the mitogen-activated protein kinase pathway. J Biol Chem. 2002;277:28265-28270.
    • (2002) J Biol Chem , vol.277 , pp. 28265-28270
    • Yamashita, T.1    Konishi, M.2    Miyake, A.3    Inui, K.4    Itoh, N.5
  • 58
    • 29144490730 scopus 로고    scopus 로고
    • Secreted frizzled-related protein-4 reduces sodium-phosphate co-transporter abundance and activity in proximal tubule cells
    • Berndt TJ, Bielesz B, Craig TA, et al. Secreted frizzled-related protein-4 reduces sodium-phosphate co-transporter abundance and activity in proximal tubule cells. Pflugers Arch. 2006;451:579-587.
    • (2006) Pflugers Arch , vol.451 , pp. 579-587
    • Berndt, T.J.1    Bielesz, B.2    Craig, T.A.3
  • 59
    • 0034235036 scopus 로고    scopus 로고
    • MEPE, a new gene expressed in bone marrow and tumors causing osteomalacia
    • Rowe PS, de Zoysa PA, Dong R, et al. MEPE, a new gene expressed in bone marrow and tumors causing osteomalacia. Genomics. 2000;67:54-68.
    • (2000) Genomics , vol.67 , pp. 54-68
    • Rowe, P.S.1    de Zoysa, P.A.2    Dong, R.3
  • 60
    • 44449138422 scopus 로고    scopus 로고
    • Matrix extracellular phosphoglycoprotein causes phosphaturia in rats by inhibiting tubular phosphate reabsorption
    • Dobbie H, Unwin RJ, Faria NJ, Shirley DG. Matrix extracellular phosphoglycoprotein causes phosphaturia in rats by inhibiting tubular phosphate reabsorption. Nephrol Dial Tranplant. 2008;23:730-733.
    • (2008) Nephrol Dial Tranplant , vol.23 , pp. 730-733
    • Dobbie, H.1    Unwin, R.J.2    Faria, N.J.3    Shirley, D.G.4
  • 61
    • 0022658738 scopus 로고
    • Renal adaptation to phosphorous deprivation: Characterization of early events
    • Levine BS, Ho LD, Pasiecznik K, Coburn JW. Renal adaptation to phosphorous deprivation: characterization of early events. J Bone Miner Res. 1986;1:33-40.
    • (1986) J Bone Miner Res , vol.1 , pp. 33-40
    • Levine, B.S.1    Ho, L.D.2    Pasiecznik, K.3    Coburn, J.W.4
  • 62
    • 34547443884 scopus 로고    scopus 로고
    • Evidence for a signaling axis by which intestinal phosphate rapidly modulates renal phosphate reabsorption
    • Berndt T, Thomas LF, Craig TA, et al. Evidence for a signaling axis by which intestinal phosphate rapidly modulates renal phosphate reabsorption. Proc Natl Acad Sci U S A. 2007;104:11085-11090.
    • (2007) Proc Natl Acad Sci U S A , vol.104 , pp. 11085-11090
    • Berndt, T.1    Thomas, L.F.2    Craig, T.A.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.