메뉴 건너뛰기




Volumn 62, Issue 6, 2011, Pages 1301-1310

Comparison of FFNN and ANFIS models for estimating groundwater level

Author keywords

Artificial neural networks; Feed forward network; Fuzzy logic; Groundwater level

Indexed keywords

ADAPTIVE NETWORK BASED FUZZY INFERENCE SYSTEM; ANDHRA PRADESH; ANFIS MODEL; ARTIFICIAL NEURAL NETWORK; ARTIFICIAL NEURAL NETWORK MODELS; CLIMATIC STRESS; COMPLEX PATTERN; DYNAMIC NATURE; ERROR VARIATION; FEED-FORWARD NETWORK; GROUNDWATER LEVEL; GROUNDWATER RESOURCES MANAGEMENT; GROUNDWATER SYSTEM; LEVENBERG-MARQUARDT ALGORITHM; NEGATIVE VALUES; REGRESSION COEFFICIENT; ROOT MEAN SQUARE ERRORS; STATISTICAL INDICES; STATISTICAL MODELING; UNCERTAIN FACTORS; WATER BALANCE;

EID: 79952070507     PISSN: 18666280     EISSN: 18666299     Source Type: Journal    
DOI: 10.1007/s12665-010-0617-0     Document Type: Article
Times cited : (50)

References (41)
  • 1
    • 33645826343 scopus 로고    scopus 로고
    • Will we have a wet summer? Long term rain forecasting using soft computing models
    • E. J. H. Kerchoffs and M. Snorek (Eds.), Prague: The Society for Computer Simulation International Publication
    • Abraham A, Philip NS, Joseph B (2001) Will we have a wet summer? Long term rain forecasting using soft computing models. In: Kerchoffs EJH, Snorek M (eds) Proceeding modelling and simulation (2001). The Society for Computer Simulation International Publication, Prague, pp 1044-1048.
    • (2001) Proceeding Modelling and Simulation (2001) , pp. 1044-1048
    • Abraham, A.1    Philip, N.S.2    Joseph, B.3
  • 3
    • 33846458992 scopus 로고    scopus 로고
    • Forecasting surface water level fluctuations of Lake Van by artificial neural networks
    • Altunkaynak A (2007) Forecasting surface water level fluctuations of Lake van by artificial neural networks. Water Resour Manage 21: 399-408.
    • (2007) Water Resour Manage , vol.21 , pp. 399-408
    • Altunkaynak, A.1
  • 4
    • 1442291113 scopus 로고    scopus 로고
    • Impact of the length of observed records on the performance of ANN and of conceptual parsimonious rainfall-runoff forecasting models
    • Anctil F, Perrin C, Andreassian V (2004) Impact of the length of observed records on the performance of ANN and of conceptual parsimonious rainfall-runoff forecasting models. Environ Model Softw 19(4): 357-368.
    • (2004) Environ Model Softw , vol.19 , Issue.4 , pp. 357-368
    • Anctil, F.1    Perrin, C.2    Andreassian, V.3
  • 5
    • 0002918396 scopus 로고
    • Neural network primer: Part I
    • Caudill M (1987) Neural network primer: Part I. AI Expert, pp 46-52.
    • (1987) AI Expert , pp. 46-52
    • Caudill, M.1
  • 6
    • 17244381357 scopus 로고    scopus 로고
    • Neuro-computing based short range prediction of some meteorological parameters during pre-monsoon season
    • doi:10.1007/s00500-004-0414-3
    • Chaudhuri S, Chattopadhyay S (2005a) Neuro-computing based short range prediction of some meteorological parameters during pre-monsoon season. Soft Comput Fusion Found Methodol Appl 95: 349-354. doi: 10. 1007/s00500-004-0414-3.
    • (2005) Soft Comput Fusion Found Methodol Appl , vol.95 , pp. 349-354
    • Chaudhuri, S.1    Chattopadhyay, S.2
  • 7
    • 17644388432 scopus 로고    scopus 로고
    • Prediction of severe thunderstorm with minimal a-priori knowledge
    • doi:10.1142/S0219525905000348
    • Chaudhuri S, Chattopadhyay S (2005b) Prediction of severe thunderstorm with minimal a-priori knowledge. Adv Complex Syst 8(1): 75-86. doi: 10. 1142/S0219525905000348.
    • (2005) Adv Complex Syst , vol.8 , Issue.1 , pp. 75-86
    • Chaudhuri, S.1    Chattopadhyay, S.2
  • 8
    • 0031172117 scopus 로고    scopus 로고
    • Comparing neural networks and regression models for ozone forecasting
    • Comrie AC (1997) Comparing neural networks and regression models for ozone forecasting. J Air Waste Manag Assoc 47(6): 653-663.
    • (1997) J Air Waste Manag Assoc , vol.47 , Issue.6 , pp. 653-663
    • Comrie, A.C.1
  • 9
    • 0032829433 scopus 로고    scopus 로고
    • Hydrological forecasting using artificial neural networks: the state of the art (in French)
    • Coulibaly P, Anctil F, Bobée B (1999) Hydrological forecasting using artificial neural networks: the state of the art (in French). Can J Civ Eng 26(3): 293-304.
    • (1999) Can J Civ Eng , vol.26 , Issue.3 , pp. 293-304
    • Coulibaly, P.1    Anctil, F.2    Bobée, B.3
  • 10
    • 0034621379 scopus 로고    scopus 로고
    • Daily reservoir inflow forecasting using artificial neural networks with stopped training approach
    • Coulibaly P, Anctil F, Bobee B (2000) Daily reservoir inflow forecasting using artificial neural networks with stopped training approach. J Hydrol 230: 244-257.
    • (2000) J Hydrol , vol.230 , pp. 244-257
    • Coulibaly, P.1    Anctil, F.2    Bobee, B.3
  • 11
    • 0034993945 scopus 로고    scopus 로고
    • Artificial neural network modeling of water table depth fluctuations
    • Coulibaly P, Anctil F, Aravena R, Bobée B (2001a) Artificial neural network modeling of water table depth fluctuations. Water Resour Res 37(4): 885-896.
    • (2001) Water Resour Res , vol.37 , Issue.4 , pp. 885-896
    • Coulibaly, P.1    Anctil, F.2    Aravena, R.3    Bobée, B.4
  • 12
    • 0035450182 scopus 로고    scopus 로고
    • Multivariate reservoir inflow forecasting using temporal neural networks
    • Coulibaly P, Anctil F, Bobée B (2001b) Multivariate reservoir inflow forecasting using temporal neural networks. J Hydrol Eng 9-10: 367-376.
    • (2001) J Hydrol Eng , vol.9-10 , pp. 367-376
    • Coulibaly, P.1    Anctil, F.2    Bobée, B.3
  • 13
    • 0035876630 scopus 로고    scopus 로고
    • Improving extreme hydrologic events forecasting using a new criterion for artificial neural network selection
    • Coulibaly P, Bobee B, Anctil F (2001c) Improving extreme hydrologic events forecasting using a new criterion for artificial neural network selection. Hydrol Process 15: 1533-1536.
    • (2001) Hydrol Process , vol.15 , pp. 1533-1536
    • Coulibaly, P.1    Bobee, B.2    Anctil, F.3
  • 14
    • 0027007868 scopus 로고
    • Rainfall forecasting in space and time using a neural network
    • French MN, Krajewski WF, Cuykendall RR (1992) Rainfall forecasting in space and time using a neural network. J Hydrol 137: 1-31.
    • (1992) J Hydrol , vol.137 , pp. 1-31
    • French, M.N.1    Krajewski, W.F.2    Cuykendall, R.R.3
  • 15
    • 0036741941 scopus 로고    scopus 로고
    • A neural-network-based classification scheme for sorting sources and ages of fecal contamination in water
    • Gail M, Brion TR, Neelakantan SL (2002) A neural-network-based classification scheme for sorting sources and ages of fecal contamination in water. Water Res 36: 3765-3774.
    • (2002) Water Res , vol.36 , pp. 3765-3774
    • Gail, M.1    Brion, T.R.2    Neelakantan, S.L.3
  • 16
    • 10244259252 scopus 로고    scopus 로고
    • Forecasting model for the incidence of hepatitis A based on artificial neural network
    • Guan P, Huang D, Zhou B (2004) Forecasting model for the incidence of hepatitis A based on artificial neural network. World J Gastroenterol 10(24): 3579-3582.
    • (2004) World J Gastroenterol , vol.10 , Issue.24 , pp. 3579-3582
    • Guan, P.1    Huang, D.2    Zhou, B.3
  • 19
    • 0000860595 scopus 로고    scopus 로고
    • Neural network models for time series forecasts
    • Hill T, O'Connor M, Remus W (1996) Neural network models for time series forecasts. Manage Sci 42(7): 1082-1092.
    • (1996) Manage Sci , vol.42 , Issue.7 , pp. 1082-1092
    • Hill, T.1    O'Connor, M.2    Remus, W.3
  • 20
    • 0024880831 scopus 로고
    • Multilayer feed-forward networks are universal approximators
    • Hornik K, Stinchcombe M, White H (1989) Multilayer feed-forward networks are universal approximators. Neural Networks 2: 359-366.
    • (1989) Neural Networks , vol.2 , pp. 359-366
    • Hornik, K.1    Stinchcombe, M.2    White, H.3
  • 21
    • 20344369583 scopus 로고    scopus 로고
    • Groundwater level forecasting using artificial neural networks
    • Ioannis N, Daliakopoulos, Paulin C, Ioannis K, Tsanis (2005) Groundwater level forecasting using artificial neural networks. J Hydrol 309: 229-240.
    • (2005) J Hydrol , vol.309 , pp. 229-240
    • Ioannis, N.1    Daliakopoulos2    Paulin, C.3    Ioannis, K.4    Tsanis5
  • 23
    • 79952070719 scopus 로고    scopus 로고
    • In: 4th international scientific conference Elektro-2001 faculty of electrical engineering, University of Zilina, Slovak Republic, ISBN: 80-7100-836-2
    • Khan MR, Zak L, Ondrusek C (2001) Fuzzy logic based short-term electric load forecasting. In: 4th international scientific conference Elektro-2001 faculty of electrical engineering, University of Zilina, Slovak Republic, ISBN: 80-7100-836-2, pp 19-24.
    • (2001) Fuzzy Logic Based Short-term Electric Load Forecasting , pp. 19-24
    • Khan, M.R.1    Zak, L.2    Ondrusek, C.3
  • 24
    • 0030428001 scopus 로고    scopus 로고
    • Application of neural networks to modelling non-linear relationships in ecology
    • Lek S, Delacoste M, Baran P, Dimopoulos I, Lauga J, Aulagnier S (1996) Application of neural networks to modelling non-linear relationships in ecology. Ecol Model 90(1): 39-52.
    • (1996) Ecol Model , vol.90 , Issue.1 , pp. 39-52
    • Lek, S.1    Delacoste, M.2    Baran, P.3    Dimopoulos, I.4    Lauga, J.5    Aulagnier, S.6
  • 25
    • 0032034197 scopus 로고    scopus 로고
    • Understanding the behavior and optimizing the performance of back-propagation neural networks: an empirical study
    • Maier HR, Dandy GC (1998) Understanding the behavior and optimizing the performance of back-propagation neural networks: an empirical study. Environ Model Softw 13: 179-191.
    • (1998) Environ Model Softw , vol.13 , pp. 179-191
    • Maier, H.R.1    Dandy, G.C.2
  • 26
    • 0033957764 scopus 로고    scopus 로고
    • Neural networks for the prediction and forecasting of water resources variables: a review of modeling issues and applications
    • Maier HR, Dandy GC (2000) Neural networks for the prediction and forecasting of water resources variables: a review of modeling issues and applications. Environ Model Softw 15: 101-124.
    • (2000) Environ Model Softw , vol.15 , pp. 101-124
    • Maier, H.R.1    Dandy, G.C.2
  • 28
    • 0030084673 scopus 로고    scopus 로고
    • Optimal fuzzy inference for short-term load forecasting
    • Mori H, Hidenori K (1996) Optimal fuzzy inference for short-term load forecasting. IEEE Trans Power Syst 11(1): 390-396.
    • (1996) IEEE Trans Power Syst , vol.11 , Issue.1 , pp. 390-396
    • Mori, H.1    Hidenori, K.2
  • 29
    • 0031591149 scopus 로고    scopus 로고
    • Prediction of functional characteristics of ecosystems: a comparison of artificial neural networks and regression models
    • Paruelo JM, Tomasel F (1997) Prediction of functional characteristics of ecosystems: a comparison of artificial neural networks and regression models. Ecol Model 98(2-3): 173-186.
    • (1997) Ecol Model , vol.98 , Issue.2-3 , pp. 173-186
    • Paruelo, J.M.1    Tomasel, F.2
  • 33
    • 0027601884 scopus 로고
    • ANFIS: adaptive network-based fuzzy inference system
    • Roger Jang JS (1993) ANFIS: adaptive network-based fuzzy inference system. IEEE Trans Syst Man Cybern 23(3): 665-685.
    • (1993) IEEE Trans Syst Man Cybern , vol.23 , Issue.3 , pp. 665-685
    • Roger Jang, J.S.1
  • 34
    • 0034174397 scopus 로고    scopus 로고
    • Precipitation-runoff modeling using artificial neural networks and conceptual models
    • Sezin Tokar A, Markus M (2000) Precipitation-runoff modeling using artificial neural networks and conceptual models. J Hydrol Eng 5: 156-161.
    • (2000) J Hydrol Eng , vol.5 , pp. 156-161
    • Sezin Tokar, A.1    Markus, M.2
  • 35
    • 0001856112 scopus 로고
    • Quantitative geomorphology of drainage basins and channel networks
    • V. T. Chow (Ed.), New York: McGraw-Hill
    • Strahler AN (1964) Quantitative geomorphology of drainage basins and channel networks. In: Chow VT (ed) Handbook of applied hydrology. McGraw-Hill, New York, pp 4. 39-4. 76.
    • (1964) Handbook of Applied Hydrology , pp. 39-76
    • Strahler, A.N.1
  • 37
    • 0000393458 scopus 로고
    • Feedforward neural nets as models for time series forecasting
    • Tang Z, Fishwick PA (1993) Feedforward neural nets as models for time series forecasting. ORSA J Comput 5: 374-385.
    • (1993) ORSA J Comput , vol.5 , pp. 374-385
    • Tang, Z.1    Fishwick, P.A.2
  • 38
    • 0034694775 scopus 로고    scopus 로고
    • Comparison of short-term rainfall prediction models for real-time flood forecasting
    • Toth E, Brath A, Montanari A (2000) Comparison of short-term rainfall prediction models for real-time flood forecasting. J Hydrol 239: 132-147.
    • (2000) J Hydrol , vol.239 , pp. 132-147
    • Toth, E.1    Brath, A.2    Montanari, A.3
  • 39
    • 0037243071 scopus 로고    scopus 로고
    • Time Series forecasting using a hybrid ARIMA and neural network model
    • Zhang G (2003) Time Series forecasting using a hybrid ARIMA and neural network model. Neurocomputing 50: 159-175.
    • (2003) Neurocomputing , vol.50 , pp. 159-175
    • Zhang, G.1
  • 40
    • 79952069205 scopus 로고    scopus 로고
    • In: Soft computing for risk evaluation and management. Physica-Verlag, Heidelberg
    • Zhang J, Knoll A (2001) Neuro fuzzy modeling of time series. In: Soft computing for risk evaluation and management. Physica-Verlag, Heidelberg, pp 140-154.
    • (2001) Neuro Fuzzy Modeling of Time Series , pp. 140-154
    • Zhang, J.1    Knoll, A.2
  • 41
    • 0028604724 scopus 로고
    • Artificial neural network techniques for estimating rainfall and recognizing cloud merger from satellite data
    • Zhang M, Scofield AR (1994) Artificial neural network techniques for estimating rainfall and recognizing cloud merger from satellite data. Int J Remote Sens 16: 3241-3262.
    • (1994) Int J Remote Sens , vol.16 , pp. 3241-3262
    • Zhang, M.1    Scofield, A.R.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.