메뉴 건너뛰기




Volumn 9, Issue 3, 1996, Pages 509-521

Structural learning with forgetting

Author keywords

AIC; Classification; Forgetting; Recurrent network; Regularity discovery; Rule extraction; Structural learning; Time series prediction

Indexed keywords

BACKPROPAGATION; BOOLEAN FUNCTIONS; COMPUTATIONAL COMPLEXITY; LEARNING ALGORITHMS; NEURAL NETWORKS;

EID: 0030130724     PISSN: 08936080     EISSN: None     Source Type: Journal    
DOI: 10.1016/0893-6080(96)83696-3     Document Type: Article
Times cited : (265)

References (28)
  • 1
    • 0016355478 scopus 로고
    • A new look at the statistical model identification
    • Akaike, H. (1974). A new look at the statistical model identification. IEEE Trans. on Automatic Control, AC-19(6), 716-723.
    • (1974) IEEE Trans. on Automatic Control , vol.AC-19 , Issue.6 , pp. 716-723
    • Akaike, H.1
  • 2
    • 0001561263 scopus 로고
    • Bayesian back-propagation
    • Buntine, W., & Weigend, A. S. (1991). Bayesian back-propagation. Complex Systems, 5, 603-643.
    • (1991) Complex Systems , vol.5 , pp. 603-643
    • Buntine, W.1    Weigend, A.S.2
  • 3
    • 0000155950 scopus 로고
    • The cascade-correlation learning architecture
    • D. S. Touretzky (Ed.), San Mateo, CA: Morgan Kaufmann
    • Fahlman, S. E., & Lebiere, C. (1990). The cascade-correlation learning architecture. In D. S. Touretzky (Ed.), Advances in neural information processing systems (Vol. 2, pp. 642-649). San Mateo, CA: Morgan Kaufmann.
    • (1990) Advances in Neural Information Processing Systems , vol.2 , pp. 642-649
    • Fahlman, S.E.1    Lebiere, C.2
  • 4
    • 0000764772 scopus 로고
    • The use of multiple measurements in taxonomic problem
    • Fisher, R. A. (1936). The use of multiple measurements in taxonomic problem. Annals of Eugenics, 7(2), 179-188.
    • (1936) Annals of Eugenics , vol.7 , Issue.2 , pp. 179-188
    • Fisher, R.A.1
  • 5
    • 0026221027 scopus 로고
    • An information criterion for optimal neural network selection
    • Fogel, D. B. (1991). An information criterion for optimal neural network selection. IEEE Trans. on Neural Networks, 2(5), 490-497.
    • (1991) IEEE Trans. on Neural Networks , vol.2 , Issue.5 , pp. 490-497
    • Fogel, D.B.1
  • 6
    • 0027245159 scopus 로고
    • Knowledge-based connectionism for revising domain theories
    • Fu, L. M. (1993), Knowledge-based connectionism for revising domain theories. IEEE Trans. on SMC, 23(1), 173-182.
    • (1993) IEEE Trans. on SMC , vol.23 , Issue.1 , pp. 173-182
    • Fu, L.M.1
  • 7
    • 85030201460 scopus 로고
    • A structural learning algorithm with forgetting of link weights
    • Washington DC, also Technical Report TR-90-7, Electrotechnical Laboratory, Japan
    • Ishikawa, M. (1989). A structural learning algorithm with forgetting of link weights. IJCNN, II-626, Washington DC, also (1990). Technical Report TR-90-7, Electrotechnical Laboratory, Japan.
    • (1989) IJCNN, II-626
    • Ishikawa, M.1
  • 8
    • 0028729909 scopus 로고
    • Structural learning and its applications to rule extraction
    • Orlando, FL
    • Ishikawa, M. (1994a). Structural learning and its applications to rule extraction. Proceedings of ICNN'94, (pp. 354-359). Orlando, FL.
    • (1994) Proceedings of ICNN'94 , pp. 354-359
    • Ishikawa, M.1
  • 10
    • 0029305603 scopus 로고
    • Learning of modular structured networks
    • Ishikawa, M. (1995). Learning of modular structured networks. Artificial Intelligence, 75, 51-62.
    • (1995) Artificial Intelligence , vol.75 , pp. 51-62
    • Ishikawa, M.1
  • 11
    • 0011832197 scopus 로고
    • A structural learning of neural networks based on an entropy criterion
    • Beijing
    • Ishikawa, M., & Uchida, H. (1992). A structural learning of neural networks based on an entropy criterion. IJCNN'92, II375-380, Beijing.
    • (1992) IJCNN'92
    • Ishikawa, M.1    Uchida, H.2
  • 12
    • 85030210413 scopus 로고    scopus 로고
    • A general structural learning with forgetting for recurrent networks and its applications
    • In press
    • Ishikawa, M., Matsuda, T., & Yoshino, K. (In press). A general structural learning with forgetting for recurrent networks and its applications. Progress in Neural Networks.
    • Progress in Neural Networks
    • Ishikawa, M.1    Matsuda, T.2    Yoshino, K.3
  • 13
    • 85132299999 scopus 로고
    • Discovering production rules with higher order neural networks: A case study
    • Kowalczyk, A., Ferrá, H. L., & Gardiner, K. (1991). Discovering production rules with higher order neural networks: a case study. Proceedings of Machine Learning, 158-162.
    • (1991) Proceedings of Machine Learning , pp. 158-162
    • Kowalczyk, A.1    Ferrá, H.L.2    Gardiner, K.3
  • 15
    • 0000164013 scopus 로고
    • A method to determine the number of hidden units of three layered neural networks by information criteria
    • in Japanese
    • Kurita, T. (1990). A method to determine the number of hidden units of three layered neural networks by information criteria. Trans. Inst. Electronics, Information and Communication Engineers, J73-D-II(11), 1872-1878 (in Japanese).
    • (1990) Trans. Inst. Electronics, Information and Communication Engineers , vol.J73-D-II , Issue.11 , pp. 1872-1878
    • Kurita, T.1
  • 17
    • 0010203993 scopus 로고    scopus 로고
    • Probable networks and plausible predictions - A review of practical Bayesian methods for supervised neural networks
    • In press
    • MacKay, D. J. C. (In press). Probable networks and plausible predictions - a review of practical Bayesian methods for supervised neural networks. Network.
    • Network
    • MacKay, D.J.C.1
  • 18
    • 21344480887 scopus 로고
    • Combining connectionist and symbolic learning to refine certainty-factor rule bases
    • Mahoney, J. J., & Mooney, R. J. (1993). Combining connectionist and symbolic learning to refine certainty-factor rule bases. Connection Science, 5(3, 4), 339-364.
    • (1993) Connection Science , vol.5 , Issue.3-4 , pp. 339-364
    • Mahoney, J.J.1    Mooney, R.J.2
  • 19
    • 0000902690 scopus 로고
    • The effective number of parameters: An analysis of generalization and regularization in nonlinear learning systems
    • San Mateo, CA: Morgan Kaufmann
    • Moody, J. E. (1992). The effective number of parameters: an analysis of generalization and regularization in nonlinear learning systems. In Advances in Neural Information Processing Systems (Vol. 4, pp. 847-854). San Mateo, CA: Morgan Kaufmann.
    • (1992) Advances in Neural Information Processing Systems , vol.4 , pp. 847-854
    • Moody, J.E.1
  • 20
    • 84892167083 scopus 로고
    • Using relevance to reduce network size automatically
    • Mozer, M. C., & Smolensky, P. (1989). Using relevance to reduce network size automatically. Connection Science, 1(1), 3-16.
    • (1989) Connection Science , vol.1 , Issue.1 , pp. 3-16
    • Mozer, M.C.1    Smolensky, P.2
  • 21
    • 0028544395 scopus 로고
    • Network information criterion - Determining the number of hidden units for an artificial neural network model
    • Murata, N., Yoshizawa, S., & Amari, S. (1994). Network information criterion - Determining the number of hidden units for an artificial neural network model. IEEE Trans. on Neural Networks, 5(6), 865-872.
    • (1994) IEEE Trans. on Neural Networks , vol.5 , Issue.6 , pp. 865-872
    • Murata, N.1    Yoshizawa, S.2    Amari, S.3
  • 22
    • 0003408496 scopus 로고
    • Department of Information and Computer Science, University of California, Irvine, CA
    • Murphy, P. M., & Aha, D. W. (1992). UCI Repository of machine learning databases. Department of Information and Computer Science, University of California, Irvine, CA.
    • (1992) UCI Repository of Machine Learning Databases
    • Murphy, P.M.1    Aha, D.W.2
  • 24
    • 0027662338 scopus 로고
    • Pruning algorithms - A survey
    • Reed, R. (1993). Pruning algorithms - a survey. IEEE Trans. on Neural Networks, 4(5), 740-747.
    • (1993) IEEE Trans. on Neural Networks , vol.4 , Issue.5 , pp. 740-747
    • Reed, R.1
  • 26
    • 0027678679 scopus 로고
    • Extracting refined rules from knowledge-based neural networks
    • Towell, G. G., & Shavlik, J. W. (1993). Extracting refined rules from knowledge-based neural networks. Machine Learning, 13, 71-101.
    • (1993) Machine Learning , vol.13 , pp. 71-101
    • Towell, G.G.1    Shavlik, J.W.2
  • 27
    • 0001765578 scopus 로고
    • Gradient-based learning algorithm for recurrent networks
    • Y. Chauvin & D. E. Rumelhart (Eds.), Hillsdale, NJ: Erlbaum
    • Williams, R. J., & Zipser, D. (1995). Gradient-based learning algorithm for recurrent networks. In Y. Chauvin & D. E. Rumelhart (Eds.), Back-propagation: theory, architectures and applications. Hillsdale, NJ: Erlbaum.
    • (1995) Back-propagation: Theory, Architectures and Applications
    • Williams, R.J.1    Zipser, D.2
  • 28
    • 0343296309 scopus 로고
    • A new method to remove redundant connections in backpropagation neural networks: Introduction of "parametric lateral inhibition fields."
    • Beijing
    • Yasui, S. (1992). A new method to remove redundant connections in backpropagation neural networks: Introduction of "parametric lateral inhibition fields." IJCNN'92, pp. II360-367, Beijing.
    • (1992) IJCNN'92
    • Yasui, S.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.