-
1
-
-
0016355478
-
A new look at the statistical model identification
-
Akaike, H. (1974). A new look at the statistical model identification. IEEE Trans. on Automatic Control, AC-19(6), 716-723.
-
(1974)
IEEE Trans. on Automatic Control
, vol.AC-19
, Issue.6
, pp. 716-723
-
-
Akaike, H.1
-
3
-
-
0000155950
-
The cascade-correlation learning architecture
-
D. S. Touretzky (Ed.), San Mateo, CA: Morgan Kaufmann
-
Fahlman, S. E., & Lebiere, C. (1990). The cascade-correlation learning architecture. In D. S. Touretzky (Ed.), Advances in neural information processing systems (Vol. 2, pp. 642-649). San Mateo, CA: Morgan Kaufmann.
-
(1990)
Advances in Neural Information Processing Systems
, vol.2
, pp. 642-649
-
-
Fahlman, S.E.1
Lebiere, C.2
-
4
-
-
0000764772
-
The use of multiple measurements in taxonomic problem
-
Fisher, R. A. (1936). The use of multiple measurements in taxonomic problem. Annals of Eugenics, 7(2), 179-188.
-
(1936)
Annals of Eugenics
, vol.7
, Issue.2
, pp. 179-188
-
-
Fisher, R.A.1
-
5
-
-
0026221027
-
An information criterion for optimal neural network selection
-
Fogel, D. B. (1991). An information criterion for optimal neural network selection. IEEE Trans. on Neural Networks, 2(5), 490-497.
-
(1991)
IEEE Trans. on Neural Networks
, vol.2
, Issue.5
, pp. 490-497
-
-
Fogel, D.B.1
-
6
-
-
0027245159
-
Knowledge-based connectionism for revising domain theories
-
Fu, L. M. (1993), Knowledge-based connectionism for revising domain theories. IEEE Trans. on SMC, 23(1), 173-182.
-
(1993)
IEEE Trans. on SMC
, vol.23
, Issue.1
, pp. 173-182
-
-
Fu, L.M.1
-
7
-
-
85030201460
-
A structural learning algorithm with forgetting of link weights
-
Washington DC, also Technical Report TR-90-7, Electrotechnical Laboratory, Japan
-
Ishikawa, M. (1989). A structural learning algorithm with forgetting of link weights. IJCNN, II-626, Washington DC, also (1990). Technical Report TR-90-7, Electrotechnical Laboratory, Japan.
-
(1989)
IJCNN, II-626
-
-
Ishikawa, M.1
-
8
-
-
0028729909
-
Structural learning and its applications to rule extraction
-
Orlando, FL
-
Ishikawa, M. (1994a). Structural learning and its applications to rule extraction. Proceedings of ICNN'94, (pp. 354-359). Orlando, FL.
-
(1994)
Proceedings of ICNN'94
, pp. 354-359
-
-
Ishikawa, M.1
-
10
-
-
0029305603
-
Learning of modular structured networks
-
Ishikawa, M. (1995). Learning of modular structured networks. Artificial Intelligence, 75, 51-62.
-
(1995)
Artificial Intelligence
, vol.75
, pp. 51-62
-
-
Ishikawa, M.1
-
11
-
-
0011832197
-
A structural learning of neural networks based on an entropy criterion
-
Beijing
-
Ishikawa, M., & Uchida, H. (1992). A structural learning of neural networks based on an entropy criterion. IJCNN'92, II375-380, Beijing.
-
(1992)
IJCNN'92
-
-
Ishikawa, M.1
Uchida, H.2
-
12
-
-
85030210413
-
A general structural learning with forgetting for recurrent networks and its applications
-
In press
-
Ishikawa, M., Matsuda, T., & Yoshino, K. (In press). A general structural learning with forgetting for recurrent networks and its applications. Progress in Neural Networks.
-
Progress in Neural Networks
-
-
Ishikawa, M.1
Matsuda, T.2
Yoshino, K.3
-
13
-
-
85132299999
-
Discovering production rules with higher order neural networks: A case study
-
Kowalczyk, A., Ferrá, H. L., & Gardiner, K. (1991). Discovering production rules with higher order neural networks: a case study. Proceedings of Machine Learning, 158-162.
-
(1991)
Proceedings of Machine Learning
, pp. 158-162
-
-
Kowalczyk, A.1
Ferrá, H.L.2
Gardiner, K.3
-
15
-
-
0000164013
-
A method to determine the number of hidden units of three layered neural networks by information criteria
-
in Japanese
-
Kurita, T. (1990). A method to determine the number of hidden units of three layered neural networks by information criteria. Trans. Inst. Electronics, Information and Communication Engineers, J73-D-II(11), 1872-1878 (in Japanese).
-
(1990)
Trans. Inst. Electronics, Information and Communication Engineers
, vol.J73-D-II
, Issue.11
, pp. 1872-1878
-
-
Kurita, T.1
-
16
-
-
0000494466
-
Optimal brain damage
-
D. S. Touretzky (Ed.), San Mato, CA: Morgan Kaufmann
-
Le Cun, Y., Denker, J. S., & Solla, S. A. (1990). Optimal brain damage. In D. S. Touretzky (Ed.), Advances in neural information processing systems (Vol. 2, pp. 598-605). San Mato, CA: Morgan Kaufmann.
-
(1990)
Advances in Neural Information Processing Systems
, vol.2
, pp. 598-605
-
-
Le Cun, Y.1
Denker, J.S.2
Solla, S.A.3
-
17
-
-
0010203993
-
Probable networks and plausible predictions - A review of practical Bayesian methods for supervised neural networks
-
In press
-
MacKay, D. J. C. (In press). Probable networks and plausible predictions - a review of practical Bayesian methods for supervised neural networks. Network.
-
Network
-
-
MacKay, D.J.C.1
-
18
-
-
21344480887
-
Combining connectionist and symbolic learning to refine certainty-factor rule bases
-
Mahoney, J. J., & Mooney, R. J. (1993). Combining connectionist and symbolic learning to refine certainty-factor rule bases. Connection Science, 5(3, 4), 339-364.
-
(1993)
Connection Science
, vol.5
, Issue.3-4
, pp. 339-364
-
-
Mahoney, J.J.1
Mooney, R.J.2
-
19
-
-
0000902690
-
The effective number of parameters: An analysis of generalization and regularization in nonlinear learning systems
-
San Mateo, CA: Morgan Kaufmann
-
Moody, J. E. (1992). The effective number of parameters: an analysis of generalization and regularization in nonlinear learning systems. In Advances in Neural Information Processing Systems (Vol. 4, pp. 847-854). San Mateo, CA: Morgan Kaufmann.
-
(1992)
Advances in Neural Information Processing Systems
, vol.4
, pp. 847-854
-
-
Moody, J.E.1
-
20
-
-
84892167083
-
Using relevance to reduce network size automatically
-
Mozer, M. C., & Smolensky, P. (1989). Using relevance to reduce network size automatically. Connection Science, 1(1), 3-16.
-
(1989)
Connection Science
, vol.1
, Issue.1
, pp. 3-16
-
-
Mozer, M.C.1
Smolensky, P.2
-
21
-
-
0028544395
-
Network information criterion - Determining the number of hidden units for an artificial neural network model
-
Murata, N., Yoshizawa, S., & Amari, S. (1994). Network information criterion - Determining the number of hidden units for an artificial neural network model. IEEE Trans. on Neural Networks, 5(6), 865-872.
-
(1994)
IEEE Trans. on Neural Networks
, vol.5
, Issue.6
, pp. 865-872
-
-
Murata, N.1
Yoshizawa, S.2
Amari, S.3
-
22
-
-
0003408496
-
-
Department of Information and Computer Science, University of California, Irvine, CA
-
Murphy, P. M., & Aha, D. W. (1992). UCI Repository of machine learning databases. Department of Information and Computer Science, University of California, Irvine, CA.
-
(1992)
UCI Repository of Machine Learning Databases
-
-
Murphy, P.M.1
Aha, D.W.2
-
23
-
-
0003794792
-
-
Technical Report CMU-CS-86-126, Carnegie-Mellon University
-
Plaut, D. C., Nowlan, S. J., & Hinton, G. E. (1986). Experiments on learning by back propagation. Technical Report CMU-CS-86-126, Carnegie-Mellon University.
-
(1986)
Experiments on Learning by Back Propagation
-
-
Plaut, D.C.1
Nowlan, S.J.2
Hinton, G.E.3
-
24
-
-
0027662338
-
Pruning algorithms - A survey
-
Reed, R. (1993). Pruning algorithms - a survey. IEEE Trans. on Neural Networks, 4(5), 740-747.
-
(1993)
IEEE Trans. on Neural Networks
, vol.4
, Issue.5
, pp. 740-747
-
-
Reed, R.1
-
26
-
-
0027678679
-
Extracting refined rules from knowledge-based neural networks
-
Towell, G. G., & Shavlik, J. W. (1993). Extracting refined rules from knowledge-based neural networks. Machine Learning, 13, 71-101.
-
(1993)
Machine Learning
, vol.13
, pp. 71-101
-
-
Towell, G.G.1
Shavlik, J.W.2
-
27
-
-
0001765578
-
Gradient-based learning algorithm for recurrent networks
-
Y. Chauvin & D. E. Rumelhart (Eds.), Hillsdale, NJ: Erlbaum
-
Williams, R. J., & Zipser, D. (1995). Gradient-based learning algorithm for recurrent networks. In Y. Chauvin & D. E. Rumelhart (Eds.), Back-propagation: theory, architectures and applications. Hillsdale, NJ: Erlbaum.
-
(1995)
Back-propagation: Theory, Architectures and Applications
-
-
Williams, R.J.1
Zipser, D.2
-
28
-
-
0343296309
-
A new method to remove redundant connections in backpropagation neural networks: Introduction of "parametric lateral inhibition fields."
-
Beijing
-
Yasui, S. (1992). A new method to remove redundant connections in backpropagation neural networks: Introduction of "parametric lateral inhibition fields." IJCNN'92, pp. II360-367, Beijing.
-
(1992)
IJCNN'92
-
-
Yasui, S.1
|