메뉴 건너뛰기




Volumn 15, Issue 2-3, 2003, Pages 117-140

Teacher-directed learning: Information-theoretic competitive learning in supervised multi-layered networks

Author keywords

Competitive learning; Mutual information maximization; Supervised multi layered networks; Teacher directed learning

Indexed keywords

COMPETITIVE LEARNING;

EID: 0242551550     PISSN: 09540091     EISSN: None     Source Type: Journal    
DOI: 10.1080/09540090310001611136     Document Type: Article
Times cited : (32)

References (26)
  • 2
    • 0000302918 scopus 로고
    • Toward a theory of early visual processing
    • Atick, J. J., and Redlich, A. N., 1990, Toward a theory of early visual processing. Neural Computation, 2: 308-320.
    • (1990) Neural Computation , vol.2 , pp. 308-320
    • Atick, J.J.1    Redlich, A.N.2
  • 3
    • 0001471775 scopus 로고
    • Unsupervised learning
    • Barlow, H. B., 1989, Unsupervised learning. Neural Computation, 1: 295-311.
    • (1989) Neural Computation , vol.1 , pp. 295-311
    • Barlow, H.B.1
  • 5
    • 0002469309 scopus 로고    scopus 로고
    • Mutual information maximization: Models of cortical self-organization
    • Becker, S., 1996, Mutual information maximization: models of cortical self-organization. Network: Computation in Neural Systems, 7: 7-31.
    • (1996) Network: Computation in Neural Systems , vol.7 , pp. 7-31
    • Becker, S.1
  • 6
    • 0000840323 scopus 로고
    • Learning mixture models of spatial coherence
    • Becker, S., and Hinton, G. E., 1993, Learning mixture models of spatial coherence. Neural Computation, 5: 267-277.
    • (1993) Neural Computation , vol.5 , pp. 267-277
    • Becker, S.1    Hinton, G.E.2
  • 8
    • 0016758101 scopus 로고
    • Cognitron: A self-organizing multi-layered neural network
    • Fukushima, K., 1975, Cognitron: a self-organizing multi-layered neural network. Biological Cybernetics, 20: 121-136.
    • (1975) Biological Cybernetics , vol.20 , pp. 121-136
    • Fukushima, K.1
  • 10
    • 5244352553 scopus 로고
    • Competitive learning: From interactive activation to adaptive resonance
    • Grossberg, S., 1987, Competitive learning: from interactive activation to adaptive resonance. Cognitive Science, 11: 23-63.
    • (1987) Cognitive Science , vol.11 , pp. 23-63
    • Grossberg, S.1
  • 12
    • 0005671334 scopus 로고    scopus 로고
    • The formation of topographic maps that maximize the average mutual information of the output responses to noiseless input signals
    • Hulle, M. M. V., 1997a, The formation of topographic maps that maximize the average mutual information of the output responses to noiseless input signals. Neural Computation, 9 (3): 595-606.
    • (1997) Neural Computation , vol.9 , Issue.3 , pp. 595-606
    • Hulle, M.M.V.1
  • 13
    • 0031128354 scopus 로고    scopus 로고
    • Topology-preserving map formation achieved with a purely local unsupervised competitive learning rule
    • Hulle, M. M. V., 1997b, Topology-preserving map formation achieved with a purely local unsupervised competitive learning rule. Neural Networks, 10 (3): 431-446.
    • (1997) Neural Networks , vol.10 , Issue.3 , pp. 431-446
    • Hulle, M.M.V.1
  • 14
    • 0037669738 scopus 로고    scopus 로고
    • Information theoretic competitive learning in self-adaptive multilayered networks
    • Kamimura, R., 2003a, Information theoretic competitive learning in self-adaptive multilayered networks. Connection Science, 15 (1): 3-26.
    • (2003) Connection Science , vol.15 , Issue.1 , pp. 3-26
    • Kamimura, R.1
  • 15
    • 0141689654 scopus 로고    scopus 로고
    • Progressive feature extraction by greedy network-growing algorithm
    • Kamimura, R., 2003b, Progressive feature extraction by greedy network-growing algorithm. Complex Systems, 14 (12): 127-153.
    • (2003) Complex Systems , vol.14 , Issue.12 , pp. 127-153
    • Kamimura, R.1
  • 17
    • 0036626892 scopus 로고    scopus 로고
    • Greedy information acquisition algorithm: A new information theoretic approach to dynamic information acquisition in neural networks
    • Kamimura, R., Kamimura, T., and Takeuchi, H., 2002, Greedy information acquisition algorithm: a new information theoretic approach to dynamic information acquisition in neural networks. Connection Science, 14 (2): 137-162.
    • (2002) Connection Science , vol.14 , Issue.2 , pp. 137-162
    • Kamimura, R.1    Kamimura, T.2    Takeuchi, H.3
  • 18
    • 0000167218 scopus 로고
    • Hidden information maximization for feature detection and rule discovery
    • Kamimura, R., and Nakanishi, S., 1995, Hidden information maximization for feature detection and rule discovery. Network, 6: 577-622.
    • (1995) Network , vol.6 , pp. 577-622
    • Kamimura, R.1    Nakanishi, S.2
  • 20
    • 0000353243 scopus 로고
    • How to generate ordered maps by maximizing the mutual information between input and output
    • Linsker, R., 1989, How to generate ordered maps by maximizing the mutual information between input and output. Neural Computation, 1: 402-411.
    • (1989) Neural Computation , vol.1 , pp. 402-411
    • Linsker, R.1
  • 22
    • 0003157343 scopus 로고
    • Conflict patterns in the interactions among nations
    • R. Hayes (ed.) (New York: Free Press)
    • McClelland, C. A., and Hoggard, G. D., 1969, Conflict patterns in the interactions among nations. In R. Hayes (ed.) International Politics and Foreign Policy (New York: Free Press), p. 714.
    • (1969) International Politics and Foreign Policy , pp. 714
    • McClelland, C.A.1    Hoggard, G.D.2
  • 24
    • 0000646059 scopus 로고
    • Learning internal representations by error progagation
    • D. E. Rumelhart, J. L. McClelland and the PDP Research Group (eds) (Cambridge MA: MIT Press)
    • Rumelhart, D. E., Hinton, G., and Williams, R., 1986, Learning internal representations by error progagation. In D. E. Rumelhart, J. L. McClelland and the PDP Research Group (eds) Parallel Distributed Processing, Vol. 1 (Cambridge MA: MIT Press), pp. 318-362.
    • (1986) Parallel Distributed Processing , vol.1 , pp. 318-362
    • Rumelhart, D.E.1    Hinton, G.2    Williams, R.3
  • 25
    • 0001608026 scopus 로고
    • Feature discovery by competitive learning
    • D. E. Rumelhart, et al. (eds) (Cambridge MA: MIT Press)
    • Rumelhart, D. E., and Zipser, D., 1986, Feature discovery by competitive learning. In D. E. Rumelhart, et al. (eds) Parallel Distributed Processing, Vol. 1 (Cambridge MA: MIT Press), pp. 151-193.
    • (1986) Parallel Distributed Processing , vol.1 , pp. 151-193
    • Rumelhart, D.E.1    Zipser, D.2
  • 26
    • 0027629412 scopus 로고
    • Rival penalized competitive learning for clustering analysis, RBF net, and curve detection
    • Xu, L., 1993, Rival penalized competitive learning for clustering analysis, RBF net, and curve detection. IEEE Transaction on Neural Networks, 4 (4): 636-649.
    • (1993) IEEE Transaction on Neural Networks , vol.4 , Issue.4 , pp. 636-649
    • Xu, L.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.