메뉴 건너뛰기




Volumn 6, Issue 2, 2011, Pages 141-146

EAR motif-mediated transcriptional repression in plants: An underlying mechanism for epigenetic regulation of gene expression

Author keywords

Chromatin modification; Co repressors; EAR motif; Epigenetic regulation; HDA19; Histone deacetylation; Phosphorylation; Post translational modification; Repressome; SAP18; TPL; Transcriptional repression

Indexed keywords

ARTICLE; CHROMATIN; CONSENSUS SEQUENCE; EPIGENETICS; ETHYLENE RESPONSIVE ELEMENT BINDING FACTOR ASSOCIATED AMPHIPHILIC REPRESSION; GENE CONTROL; GENE EXPRESSION REGULATION; GENETIC REGULATION; NONHUMAN; PHOSPHORYLATION; PLANT; PROTEIN MOTIF; REPRESSOR GENE; TRANSCRIPTION REGULATION; UBIQUITINATION;

EID: 79951506522     PISSN: 15592294     EISSN: 15592308     Source Type: Journal    
DOI: 10.4161/epi.6.2.13627     Document Type: Article
Times cited : (361)

References (50)
  • 1
    • 0037372003 scopus 로고    scopus 로고
    • Epigenetic regulation of gene expression: How the genome integrates intrinsic and environmental signals
    • Jaenisch R, Bird A. Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat Genet 2003; 33:245-54.
    • (2003) Nat Genet , vol.33 , pp. 245-254
    • Jaenisch, R.1    Bird, A.2
  • 2
    • 1842411320 scopus 로고    scopus 로고
    • Crystal structure of the nucleosome core particle at 2.8 A resolution
    • Luger K, Mader AW, Richmond RK, Sargent DF, Richmond TJ. Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature 1997; 389:251-60.
    • (1997) Nature , vol.389 , pp. 251-260
    • Luger, K.1    Mader, A.W.2    Richmond, R.K.3    Sargent, D.F.4    Richmond, T.J.5
  • 3
    • 53649108992 scopus 로고    scopus 로고
    • Abscisic acid-mediated epigenetic processes in plant development and stress responses
    • Chinnusamy V, Gong Z, Zhu JK. Abscisic acid-mediated epigenetic processes in plant development and stress responses. J Integr Plant Biol 2008; 50:1187-95.
    • (2008) J Integr Plant Biol , vol.50 , pp. 1187-1195
    • Chinnusamy, V.1    Gong, Z.2    Zhu, J.K.3
  • 4
    • 6044256118 scopus 로고    scopus 로고
    • Histones and histone modifications
    • Peterson CL, Laniel MA. Histones and histone modifications. Curr Biol 2004; 14:546-51.
    • (2004) Curr Biol , vol.14 , pp. 546-551
    • Peterson, C.L.1    Laniel, M.A.2
  • 5
    • 0037019333 scopus 로고    scopus 로고
    • Ubiquitination of histone H2B regulates H3 methylation and gene silencing in yeast
    • Sun ZW, Allis CD. Ubiquitination of histone H2B regulates H3 methylation and gene silencing in yeast. Nature 2002; 418:104-8.
    • (2002) Nature , vol.418 , pp. 104-108
    • Sun, Z.W.1    Allis, C.D.2
  • 7
    • 0029978521 scopus 로고    scopus 로고
    • Active repression mechanisms of eukaryotic transcription repressors
    • Hanna-Rose W, Hansen U. Active repression mechanisms of eukaryotic transcription repressors. Trends Genet 1996; 12:229-34.
    • (1996) Trends Genet , vol.12 , pp. 229-234
    • Hanna-Rose, W.1    Hansen, U.2
  • 8
    • 84858155955 scopus 로고    scopus 로고
    • Small yet effective: The Ethylene responsive element binding factor-associated Amphiphilic Repression (EAR) motif
    • Kagale S, Rozwadowski K. Small yet effective: The Ethylene responsive element binding factor-associated Amphiphilic Repression (EAR) motif. Plant Signal Behav 2010; 5:691-4.
    • (2010) Plant Signal Behav , vol.5 , pp. 691-694
    • Kagale, S.1    Rozwadowski, K.2
  • 9
    • 0030916336 scopus 로고    scopus 로고
    • What's up and down with histone deacetylation and transcription?
    • Pazin MJ, Kadonaga JT. What's up and down with histone deacetylation and transcription? Cell 1997; 89:325-8.
    • (1997) Cell , vol.89 , pp. 325-328
    • Pazin, M.J.1    Kadonaga, J.T.2
  • 10
    • 0034860366 scopus 로고    scopus 로고
    • Repression domains of class II ERF transcriptional repressors share an essential motif for active repression
    • Ohta M, Matsui K, Hiratsu K, Shinshi H, Ohme-Takagi M. Repression domains of class II ERF transcriptional repressors share an essential motif for active repression. Plant Cell 2001; 13:1959-68.
    • (2001) Plant Cell , vol.13 , pp. 1959-1968
    • Ohta, M.1    Matsui, K.2    Hiratsu, K.3    Shinshi, H.4    Ohme-Takagi, M.5
  • 11
    • 51249110324 scopus 로고    scopus 로고
    • AtMYBL2, a protein with a single MYB domain, acts as a negative regulator of anthocyanin biosynthesis in Arabidopsis
    • Matsui K, Umemura Y, Ohme-Takagi M. AtMYBL2, a protein with a single MYB domain, acts as a negative regulator of anthocyanin biosynthesis in Arabidopsis. Plant J 2008; 55:954-67.
    • (2008) Plant J , vol.55 , pp. 954-967
    • Matsui, K.1    Umemura, Y.2    Ohme-Takagi, M.3
  • 12
    • 66149083210 scopus 로고    scopus 로고
    • A novel group of transcriptional repressors in Arabidopsis
    • Ikeda M, Ohme-Takagi M. A novel group of transcriptional repressors in Arabidopsis. Plant Cell Physiol 2009; 50:970-5.
    • (2009) Plant Cell Physiol , vol.50 , pp. 970-975
    • Ikeda, M.1    Ohme-Takagi, M.2
  • 14
    • 0038806468 scopus 로고    scopus 로고
    • Dominant repression of target genes by chimeric repressors that include the EAR motif, a repression domain, in Arabidopsis
    • Hiratsu K, Matsui K, Koyama T, Ohme-Takagi M. Dominant repression of target genes by chimeric repressors that include the EAR motif, a repression domain, in Arabidopsis. Plant J 2003; 34:733-9.
    • (2003) Plant J , vol.34 , pp. 733-739
    • Hiratsu, K.1    Matsui, K.2    Koyama, T.3    Ohme-Takagi, M.4
  • 15
    • 0037070613 scopus 로고    scopus 로고
    • The SUPERMAN protein is an active repressor whose carboxy-terminal repression domain is required for the development of normal flowers
    • Hiratsu K, Ohta M, Matsui K, Ohme-Takagi M. The SUPERMAN protein is an active repressor whose carboxy-terminal repression domain is required for the development of normal flowers. FEBS Lett 2002; 514:351-4.
    • (2002) FEBS Lett , vol.514 , pp. 351-354
    • Hiratsu, K.1    Ohta, M.2    Matsui, K.3    Ohme-Takagi, M.4
  • 16
    • 1042290638 scopus 로고    scopus 로고
    • Aux/IAA proteins contain a potent transcriptional repression domain
    • Tiwari SB, Hagen G, Guilfoyle TJ. Aux/IAA proteins contain a potent transcriptional repression domain. Plant Cell 2004; 16:533-43.
    • (2004) Plant Cell , vol.16 , pp. 533-543
    • Tiwari, S.B.1    Hagen, G.2    Guilfoyle, T.J.3
  • 17
    • 33847784301 scopus 로고    scopus 로고
    • Two B3 domain transcriptional repressors prevent sugarinducible expression of seed maturation genes in Arabidopsis seedlings
    • Tsukagoshi H, Morikami A, Nakamura K. Two B3 domain transcriptional repressors prevent sugarinducible expression of seed maturation genes in Arabidopsis seedlings. Proc Natl Acad Sci USA 2007; 104:2543-7.
    • (2007) Proc Natl Acad Sci USA , vol.104 , pp. 2543-2547
    • Tsukagoshi, H.1    Morikami, A.2    Nakamura, K.3
  • 18
    • 18444385522 scopus 로고    scopus 로고
    • Analysis of a sugar response mutant of Arabidopsis identified a novel B3 domain protein that functions as an active transcriptional repressor
    • Tsukagoshi H, Saijo T, Shibata D, Morikami A, Nakamura K. Analysis of a sugar response mutant of Arabidopsis identified a novel B3 domain protein that functions as an active transcriptional repressor. Plant Physiol 2005; 138:675-85.
    • (2005) Plant Physiol , vol.138 , pp. 675-685
    • Tsukagoshi, H.1    Saijo, T.2    Shibata, D.3    Morikami, A.4    Nakamura, K.5
  • 19
    • 37249087892 scopus 로고    scopus 로고
    • A transcriptional repression motif in the MADS factor AGL15 is involved in recruitment of histone deacetylase complex components
    • Hill K, Wang H, Perry SE. A transcriptional repression motif in the MADS factor AGL15 is involved in recruitment of histone deacetylase complex components. Plant J 2008; 53:172-85.
    • (2008) Plant J , vol.53 , pp. 172-185
    • Hill, K.1    Wang, H.2    Perry, S.E.3
  • 20
    • 31344442838 scopus 로고    scopus 로고
    • Interaction of NIMIN1 with NPR1 modulates PR gene expression in Arabidopsis
    • Weigel RR, Pfitzner UM, Gatz C. Interaction of NIMIN1 with NPR1 modulates PR gene expression in Arabidopsis. Plant Cell 2005; 17:1279-91.
    • (2005) Plant Cell , vol.17 , pp. 1279-1291
    • Weigel, R.R.1    Pfitzner, U.M.2    Gatz, C.3
  • 21
    • 40449131628 scopus 로고    scopus 로고
    • TOPLESS mediates auxin-dependent transcriptional repression during Arabidopsis embryogenesis
    • Szemenyei H, Hannon M, Long JA. TOPLESS mediates auxin-dependent transcriptional repression during Arabidopsis embryogenesis. Science 2008; 319:1384-6.
    • (2008) Science , vol.319 , pp. 1384-1386
    • Szemenyei, H.1    Hannon, M.2    Long, J.A.3
  • 22
    • 77949511433 scopus 로고    scopus 로고
    • Genomewide analysis of ethylene-responsive element binding factor-associated amphiphilic repression motifcontaining transcriptional regulators in Arabidopsis
    • Kagale S, Links MG, Rozwadowski K. Genomewide analysis of ethylene-responsive element binding factor-associated amphiphilic repression motifcontaining transcriptional regulators in Arabidopsis. Plant Physiol 2010; 152:1109-34.
    • (2010) Plant Physiol , vol.152 , pp. 1109-1134
    • Kagale, S.1    Links, M.G.2    Rozwadowski, K.3
  • 23
    • 3242811226 scopus 로고    scopus 로고
    • How mammalian transcriptional repressors work
    • Thiel G, Lietz M, Hohl M. How mammalian transcriptional repressors work. Eur J Biochem 2004; 271:2855-62.
    • (2004) Eur J Biochem , vol.271 , pp. 2855-2862
    • Thiel, G.1    Lietz, M.2    Hohl, M.3
  • 24
    • 0029869172 scopus 로고    scopus 로고
    • Histone deacetylase: A regulator of transcription
    • Wolffe AP. Histone deacetylase: a regulator of transcription. Science 1996; 272:371-2.
    • (1996) Science , vol.272 , pp. 371-372
    • Wolffe, A.P.1
  • 25
    • 27744556379 scopus 로고    scopus 로고
    • Role of an Arabidopsis AP2/ EREBP-type transcriptional repressor in abscisic acid and drought stress responses
    • Song CP, Agarwal M, Ohta M, Guo Y, Halfter U, Wang P, et al. Role of an Arabidopsis AP2/ EREBP-type transcriptional repressor in abscisic acid and drought stress responses. Plant Cell 2005; 17:2384-96.
    • (2005) Plant Cell , vol.17 , pp. 2384-2396
    • Song, C.P.1    Agarwal, M.2    Ohta, M.3    Guo, Y.4    Halfter, U.5    Wang, P.6
  • 26
    • 31044443976 scopus 로고    scopus 로고
    • AtSAP18, an orthologue of human SAP18, is involved in the regulation of salt stress and mediates transcriptional repression in Arabidopsis
    • Song CP, Galbraith DW. AtSAP18, an orthologue of human SAP18, is involved in the regulation of salt stress and mediates transcriptional repression in Arabidopsis. Plant Mol Biol 2006; 60:241-57.
    • (2006) Plant Mol Biol , vol.60 , pp. 241-257
    • Song, C.P.1    Galbraith, D.W.2
  • 27
    • 48249157844 scopus 로고    scopus 로고
    • Histone deacetylase genes in Arabidopsis development
    • Hollender C, Liu Z. Histone deacetylase genes in Arabidopsis development. J Integr Plant Biol 2008; 50:875-85.
    • (2008) J Integr Plant Biol , vol.50 , pp. 875-885
    • Hollender, C.1    Liu, Z.2
  • 28
    • 0034031131 scopus 로고    scopus 로고
    • Arabidopsis ethylene-responsive element binding factors act as transcriptional activators or repressors of GCC box-mediated gene expression
    • Fujimoto SY, Ohta M, Usui A, Shinshi H, Ohme-Takagi M. Arabidopsis ethylene-responsive element binding factors act as transcriptional activators or repressors of GCC box-mediated gene expression. Plant Cell 2000; 12:393-404.
    • (2000) Plant Cell , vol.12 , pp. 393-404
    • Fujimoto, S.Y.1    Ohta, M.2    Usui, A.3    Shinshi, H.4    Ohme-Takagi, M.5
  • 29
    • 33644655130 scopus 로고    scopus 로고
    • Repressor-and activator-type ethylene response factors functioning in jasmonate signaling and disease resistance identified via a genome-wide screen of Arabidopsis transcription factor gene expression
    • McGrath KC, Dombrecht B, Manners JM, Schenk PM, Edgar CI, Maclean DJ, et al. Repressor-and activator-type ethylene response factors functioning in jasmonate signaling and disease resistance identified via a genome-wide screen of Arabidopsis transcription factor gene expression. Plant Physiol 2005; 139:949-59.
    • (2005) Plant Physiol , vol.139 , pp. 949-959
    • McGrath, K.C.1    Dombrecht, B.2    Manners, J.M.3    Schenk, P.M.4    Edgar, C.I.5    Maclean, D.J.6
  • 30
    • 23744460947 scopus 로고    scopus 로고
    • Arabidopsis ERF4 is a transcriptional repressor capable of modulating ethylene and abscisic acid responses
    • Yang Z, Tian L, Latoszek-Green M, Brown D, Wu K. Arabidopsis ERF4 is a transcriptional repressor capable of modulating ethylene and abscisic acid responses. Plant Mol Biol 2005; 58:585-96.
    • (2005) Plant Mol Biol , vol.58 , pp. 585-596
    • Yang, Z.1    Tian, L.2    Latoszek-Green, M.3    Brown, D.4    Wu, K.5
  • 31
    • 3543007738 scopus 로고    scopus 로고
    • Identification of the minimal repression domain of SUPERMAN shows that the DLELRL hexapeptide is both necessary and sufficient for repression of transcription in Arabidopsis
    • Hiratsu K, Mitsuda N, Matsui K, Ohme-Takagi M. Identification of the minimal repression domain of SUPERMAN shows that the DLELRL hexapeptide is both necessary and sufficient for repression of transcription in Arabidopsis. Biochem Biophys Res Commun 2004; 321:172-8.
    • (2004) Biochem Biophys Res Commun , vol.321 , pp. 172-178
    • Hiratsu, K.1    Mitsuda, N.2    Matsui, K.3    Ohme-Takagi, M.4
  • 34
    • 33744992478 scopus 로고    scopus 로고
    • TOPLESS regulates apical embryonic fate in Arabidopsis
    • Long JA, Ohno C, Smith ZR, Meyerowitz EM. TOPLESS regulates apical embryonic fate in Arabidopsis. Science 2006; 312:1520-3.
    • (2006) Science , vol.312 , pp. 1520-1523
    • Long, J.A.1    Ohno, C.2    Smith, Z.R.3    Meyerowitz, E.M.4
  • 35
    • 0033200392 scopus 로고    scopus 로고
    • A functional interaction between the histone deacetylase Rpd3 and the corepressor Groucho in Drosophila development
    • Chen G, Fernandez J, Mische S, Courey AJ. A functional interaction between the histone deacetylase Rpd3 and the corepressor Groucho in Drosophila development. Genes Dev 1999; 13:2218-30.
    • (1999) Genes Dev , vol.13 , pp. 2218-2230
    • Chen, G.1    Fernandez, J.2    Mische, S.3    Courey, A.J.4
  • 36
    • 35349013604 scopus 로고    scopus 로고
    • Repression by Groucho/TLE/ Grg proteins: Genomic site recruitment generates compacted chromatin in vitro and impairs activator binding in vivo
    • Sekiya T, Zaret KS. Repression by Groucho/TLE/ Grg proteins: genomic site recruitment generates compacted chromatin in vitro and impairs activator binding in vivo. Mol Cell 2007; 28:291-303.
    • (2007) Mol Cell , vol.28 , pp. 291-303
    • Sekiya, T.1    Zaret, K.S.2
  • 37
    • 77956331590 scopus 로고    scopus 로고
    • Groucho-mediated repression may result from a histone deacetylasedependent increase in nucleosome density
    • Winkler CJ, Ponce A, Courey AJ. Groucho-mediated repression may result from a histone deacetylasedependent increase in nucleosome density. PLoS One 2010; 5:e10166.
    • (2010) PLoS One , vol.5
    • Winkler, C.J.1    Ponce, A.2    Courey, A.J.3
  • 38
    • 77956358955 scopus 로고    scopus 로고
    • Arabidopsis resistance protein SNC1 activates immune responses through association with a transcriptional corepressor
    • Zhu Z, Xu F, Zhang Y, Cheng YT, Wiermer M, Li X. Arabidopsis resistance protein SNC1 activates immune responses through association with a transcriptional corepressor. Proc Natl Acad Sci USA 2010; 107:13960-5.
    • (2010) Proc Natl Acad Sci USA , vol.107 , pp. 13960-13965
    • Zhu, Z.1    Xu, F.2    Zhang, Y.3    Cheng, Y.T.4    Wiermer, M.5    Li, X.6
  • 39
    • 42149143483 scopus 로고    scopus 로고
    • The utility of transcription factors for manipulation of floral traits
    • Shikata M, Ohme-Takagi M. The utility of transcription factors for manipulation of floral traits. Plant Biotechnol 2008; 25:31-6.
    • (2008) Plant Biotechnol , vol.25 , pp. 31-36
    • Shikata, M.1    Ohme-Takagi, M.2
  • 40
    • 22044437388 scopus 로고    scopus 로고
    • The Botany Array Resource: E-northerns, Expression Angling and promoter analyses
    • Toufighi K, Brady SM, Austin R, Ly E, Provart NJ. The Botany Array Resource: e-northerns, Expression Angling and promoter analyses. Plant J 2005; 43:153-63.
    • (2005) Plant J , vol.43 , pp. 153-163
    • Toufighi, K.1    Brady, S.M.2    Austin, R.3    Ly, E.4    Provart, N.J.5
  • 42
    • 38549127781 scopus 로고    scopus 로고
    • PhosPhAt: A database of phosphorylation sites in Arabidopsis thaliana and a plant-specific phosphorylation site predictor
    • Heazlewood JL, Durek P, Hummel J, Selbig J, Weckwerth W, Walther D, et al. PhosPhAt: a database of phosphorylation sites in Arabidopsis thaliana and a plant-specific phosphorylation site predictor. Nucleic Acids Res 2008; 36:1015-21.
    • (2008) Nucleic Acids Res , vol.36 , pp. 1015-1021
    • Heazlewood, J.L.1    Durek, P.2    Hummel, J.3    Selbig, J.4    Weckwerth, W.5    Walther, D.6
  • 43
    • 0036136306 scopus 로고    scopus 로고
    • Role for Hes1-induced phosphorylation in Grouchomediated transcriptional repression
    • Nuthall HN, Husain J, McLarren KW, Stifani S. Role for Hes1-induced phosphorylation in Grouchomediated transcriptional repression. Mol Cell Biol 2002; 22:389-99.
    • (2002) Mol Cell Biol , vol.22 , pp. 389-399
    • Nuthall, H.N.1    Husain, J.2    McLarren, K.W.3    Stifani, S.4
  • 44
    • 4544297582 scopus 로고    scopus 로고
    • Phosphorylation of serine 239 of Groucho/TLE1 by protein kinase CK2 is important for inhibition of neuronal differentiation
    • Nuthall HN, Joachim K, Stifani S. Phosphorylation of serine 239 of Groucho/TLE1 by protein kinase CK2 is important for inhibition of neuronal differentiation. Mol Cell Biol 2004; 24:8395-407.
    • (2004) Mol Cell Biol , vol.24 , pp. 8395-8407
    • Nuthall, H.N.1    Joachim, K.2    Stifani, S.3
  • 45
    • 77949523601 scopus 로고    scopus 로고
    • Cofactor-activated phosphorylation is required for inhibition of cortical neuron differentiation by Groucho/TLE1
    • Buscarlet M, Hermann R, Lo R, Tang Y, Joachim K, Stifani S. Cofactor-activated phosphorylation is required for inhibition of cortical neuron differentiation by Groucho/TLE1. PLoS ONE 2009; 4:e8107.
    • (2009) PLoS ONE , vol.4
    • Buscarlet, M.1    Hermann, R.2    Lo, R.3    Tang, Y.4    Joachim, K.5    Stifani, S.6
  • 47
    • 0035890987 scopus 로고    scopus 로고
    • Auxin regulates SCF(TIR1)-dependent degradation of AUX/IAA proteins
    • Gray WM, Kepinski S, Rouse D, Leyser O, Estelle M. Auxin regulates SCF(TIR1)-dependent degradation of AUX/IAA proteins. Nature 2001; 414:271-6.
    • (2001) Nature , vol.414 , pp. 271-276
    • Gray, W.M.1    Kepinski, S.2    Rouse, D.3    Leyser, O.4    Estelle, M.5
  • 48
    • 30144436107 scopus 로고    scopus 로고
    • Degradation of negative regulators: A common theme in hormone and light signaling networks?
    • Huq E. Degradation of negative regulators: a common theme in hormone and light signaling networks? Trends Plant Sci 2006; 11:4-7.
    • (2006) Trends Plant Sci , vol.11 , pp. 4-7
    • Huq, E.1
  • 49
    • 67649515019 scopus 로고    scopus 로고
    • Auxininduced, SCF(TIR1)-mediated poly-ubiquitination marks AUX/IAA proteins for degradation
    • Maraschin Fdos S, Memelink J, Offringa R. Auxininduced, SCF(TIR1)-mediated poly-ubiquitination marks AUX/IAA proteins for degradation. Plant J 2009; 59:100-9.
    • (2009) Plant J , vol.59 , pp. 100-109
    • Maraschin Fdos, S.1    Memelink, J.2    Offringa, R.3
  • 50
    • 77950401024 scopus 로고    scopus 로고
    • The ubiquitin-proteasome system regulates plant hormone signaling
    • Santner A, Estelle M. The ubiquitin-proteasome system regulates plant hormone signaling. Plant J 2010; 61:1029-40.
    • (2010) Plant J , vol.61 , pp. 1029-1040
    • Santner, A.1    Estelle, M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.