메뉴 건너뛰기




Volumn 74, Issue 7, 2011, Pages 1116-1134

Supposed maximum information for comprehensible representations in SOM

Author keywords

Competitive earning; Comprehensibility; Mutual information; SOM

Indexed keywords

ANIMAL DATA; CLASS BOUNDARY; COMPETITIVE EARNING; COMPETITIVE LEARNING; COMPETITIVE NETWORK; COMPREHENSIBILITY; INFORMATION-THEORETIC METHODS; INTERPRETABLE REPRESENTATION; KOHONEN; LEARNING METHODS; MACHINE-LEARNING DATABASE; MUTUAL INFORMATIONS; SOM;

EID: 79751526256     PISSN: 09252312     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.neucom.2010.12.002     Document Type: Article
Times cited : (6)

References (69)
  • 1
    • 1942450610 scopus 로고    scopus 로고
    • Feature extraction by non-parametric mutual information maximization
    • Torkkola K. Feature extraction by non-parametric mutual information maximization. Journal of Machine Learning Research 2003, 3:1415-1438.
    • (2003) Journal of Machine Learning Research , vol.3 , pp. 1415-1438
    • Torkkola, K.1
  • 2
    • 0023981750 scopus 로고
    • Self-organization in a perceptual network
    • Linsker R. Self-organization in a perceptual network. Computer 1988, 21:105-117.
    • (1988) Computer , vol.21 , pp. 105-117
    • Linsker, R.1
  • 3
    • 0000353243 scopus 로고
    • How to generate ordered maps by maximizing the mutual information between input and output
    • Linsker R. How to generate ordered maps by maximizing the mutual information between input and output. Neural Computation 1989, 1:402-411.
    • (1989) Neural Computation , vol.1 , pp. 402-411
    • Linsker, R.1
  • 4
    • 0001471775 scopus 로고
    • Unsupervised learning
    • Barlow H.B. Unsupervised learning. Neural Computation 1989, 1:295-311.
    • (1989) Neural Computation , vol.1 , pp. 295-311
    • Barlow, H.B.1
  • 6
    • 0002469309 scopus 로고    scopus 로고
    • Mutual information maximization: models of cortical self-organization
    • Becker S. Mutual information maximization: models of cortical self-organization. Network: Computation in Neural Systems 1996, 7:7-31.
    • (1996) Network: Computation in Neural Systems , vol.7 , pp. 7-31
    • Becker, S.1
  • 7
    • 0000840323 scopus 로고
    • Learning mixture models of spatial coherence
    • Becker S., Hinton G.E. Learning mixture models of spatial coherence. Neural Computation 1993, 5:267-277.
    • (1993) Neural Computation , vol.5 , pp. 267-277
    • Becker, S.1    Hinton, G.E.2
  • 8
    • 0002515823 scopus 로고
    • Unsupervised mutual information criterion for elimination of overtraining in supervised multiplayer networks
    • Deco G., Finnof W., Zimmermann H.G. Unsupervised mutual information criterion for elimination of overtraining in supervised multiplayer networks. Neural Computation 1995, 7:86-107.
    • (1995) Neural Computation , vol.7 , pp. 86-107
    • Deco, G.1    Finnof, W.2    Zimmermann, H.G.3
  • 9
    • 0028416938 scopus 로고
    • Independent component analysis: a new concept
    • Comon P. Independent component analysis: a new concept. Signal Processing 1994, 36:287-314.
    • (1994) Signal Processing , vol.36 , pp. 287-314
    • Comon, P.1
  • 10
    • 0029411030 scopus 로고
    • An information-maximization approach to blind separation and blind deconvolution
    • Bell A., Sejnowski T.J. An information-maximization approach to blind separation and blind deconvolution. Neural Computation 1995, 7(6):1129-1159.
    • (1995) Neural Computation , vol.7 , Issue.6 , pp. 1129-1159
    • Bell, A.1    Sejnowski, T.J.2
  • 11
    • 0001525549 scopus 로고
    • Local synaptic rules suffice to maximize mutual information in a linear network
    • Linsker R. Local synaptic rules suffice to maximize mutual information in a linear network. Neural Computation 1992, 4:691-702.
    • (1992) Neural Computation , vol.4 , pp. 691-702
    • Linsker, R.1
  • 12
    • 19344364552 scopus 로고    scopus 로고
    • Improved local learning rule for information maximization and related applications
    • Linsker R. Improved local learning rule for information maximization and related applications. Neural Networks 2005, 18:261-265.
    • (2005) Neural Networks , vol.18 , pp. 261-265
    • Linsker, R.1
  • 13
    • 0028468293 scopus 로고
    • Using mutual information for selecting features in supervised neural net learning
    • Battiti R. Using mutual information for selecting features in supervised neural net learning. IEEE Transactions on Neural Networks 1994, 5(4):537-550.
    • (1994) IEEE Transactions on Neural Networks , vol.5 , Issue.4 , pp. 537-550
    • Battiti, R.1
  • 16
    • 3843114488 scopus 로고    scopus 로고
    • Advanced search algorithms for information-theoretic learning with kernel-based estimators
    • Morejon R.A., Principe J.C. Advanced search algorithms for information-theoretic learning with kernel-based estimators. IEEE Transactions on Neural Networks 2004, 15(4).
    • (2004) IEEE Transactions on Neural Networks , vol.15 , Issue.4
    • Morejon, R.A.1    Principe, J.C.2
  • 17
    • 1942450610 scopus 로고    scopus 로고
    • Feature extraction by non-parametric mutual information maximization
    • Torkkola K. Feature extraction by non-parametric mutual information maximization. Journal of Machine Learning Research 2003, 3:1415-1438.
    • (2003) Journal of Machine Learning Research , vol.3 , pp. 1415-1438
    • Torkkola, K.1
  • 20
    • 0002656190 scopus 로고
    • Feature discovery by competitive learning
    • Rumelhart D.E., Zipser D. Feature discovery by competitive learning. Cognitive Science 1985, 9:75-112.
    • (1985) Cognitive Science , vol.9 , pp. 75-112
    • Rumelhart, D.E.1    Zipser, D.2
  • 23
    • 0000671231 scopus 로고    scopus 로고
    • Ranking importance of input parameters of neural networks
    • Sung A.H. Ranking importance of input parameters of neural networks. Expert Systems with Applications 1998, 15:405-411.
    • (1998) Expert Systems with Applications , vol.15 , pp. 405-411
    • Sung, A.H.1
  • 25
    • 0029256585 scopus 로고
    • Determining input features for multiplayer perceptrons
    • Belue L.M., Bauer J.K.W. Determining input features for multiplayer perceptrons. Neurocomputing 1995, 7:111-121.
    • (1995) Neurocomputing , vol.7 , pp. 111-121
    • Belue, L.M.1    Bauer, J.K.W.2
  • 26
    • 0032100159 scopus 로고    scopus 로고
    • Assessing the importance of features for multi-layer perceptrons
    • Petersen M., Talmoon J.L., Hasman A., Ambergen A.W. Assessing the importance of features for multi-layer perceptrons. Neural Networks 1998, 11:623-635.
    • (1998) Neural Networks , vol.11 , pp. 623-635
    • Petersen, M.1    Talmoon, J.L.2    Hasman, A.3    Ambergen, A.W.4
  • 31
    • 68149181024 scopus 로고    scopus 로고
    • Enhancing and relaxing competitive units for feature discovery
    • Kamimura R. Enhancing and relaxing competitive units for feature discovery. Neural Processing Letters 2009, 30(1):37-57.
    • (2009) Neural Processing Letters , vol.30 , Issue.1 , pp. 37-57
    • Kamimura, R.1
  • 33
    • 38049168357 scopus 로고    scopus 로고
    • SOM-based data visualization methods
    • Vesanto J. SOM-based data visualization methods. Intelligent Data Analysis 1999, 3:111-126.
    • (1999) Intelligent Data Analysis , vol.3 , pp. 111-126
    • Vesanto, J.1
  • 34
    • 0842343631 scopus 로고    scopus 로고
    • Information-theoretic competitive learning with inverse Euclidean distance output units
    • Kamimura R. Information-theoretic competitive learning with inverse Euclidean distance output units. Neural Processing Letters 2003, 18:163-184.
    • (2003) Neural Processing Letters , vol.18 , pp. 163-184
    • Kamimura, R.1
  • 37
    • 31144457383 scopus 로고    scopus 로고
    • Self-organizing map-based discovery and visualization of human endogenous retroviral sequence groups
    • Oja M., Serber G.O., Blomberg J., Kaski S. Self-organizing map-based discovery and visualization of human endogenous retroviral sequence groups. International Journal of Neural Systems 2005, 15(3):163-179.
    • (2005) International Journal of Neural Systems , vol.15 , Issue.3 , pp. 163-179
    • Oja, M.1    Serber, G.O.2    Blomberg, J.3    Kaski, S.4
  • 39
    • 84958976659 scopus 로고    scopus 로고
    • Neighborhood preservation in nonlinear projection methods: an experimental study
    • Venna J., Kaski S. Neighborhood preservation in nonlinear projection methods: an experimental study. Lecture Notes in Computer Science 2001, vol. 2130:485-491.
    • (2001) Lecture Notes in Computer Science , vol.2130 , pp. 485-491
    • Venna, J.1    Kaski, S.2
  • 41
    • 0036791318 scopus 로고    scopus 로고
    • Analysis and visualization of gene expression data using self-organizing maps
    • Nikkila J., Toronen P., Kaski S., Venna J., Castren E., Wong G. Analysis and visualization of gene expression data using self-organizing maps. Neural Networks 2002, 15:953-966.
    • (2002) Neural Networks , vol.15 , pp. 953-966
    • Nikkila, J.1    Toronen, P.2    Kaski, S.3    Venna, J.4    Castren, E.5    Wong, G.6
  • 43
    • 79751534748 scopus 로고    scopus 로고
    • From insights to innovation: data mining, visualization, and user interfaces, Dissertation, Helsinki University of Technology
    • J. Himberg, From insights to innovation: data mining, visualization, and user interfaces, Dissertation, Helsinki University of Technology, 2007.
    • (2007)
    • Himberg, J.1
  • 44
    • 79751528874 scopus 로고    scopus 로고
    • Dimensionality reduction for visual exploration of similarity structures, Dissertation, Helsinki University of Technology
    • J. Venna, Dimensionality reduction for visual exploration of similarity structures, Dissertation, Helsinki University of Technology, 2007.
    • (2007)
    • Venna, J.1
  • 45
    • 77957903013 scopus 로고    scopus 로고
    • Quality assessment of nonlinear dimensionality reduction based on K-ary neighborhoods
    • Lee J.A., Verleysen M. Quality assessment of nonlinear dimensionality reduction based on K-ary neighborhoods. JMLR: Workshop and Conference Proceedings 2008, vol. 4:21-35.
    • (2008) JMLR: Workshop and Conference Proceedings , vol.4 , pp. 21-35
    • Lee, J.A.1    Verleysen, M.2
  • 46
    • 79751524410 scopus 로고    scopus 로고
    • U*-matrix: a tool to visualize clusters in high dimensional data, Technical Report 36, Department of Computer Science, University of Marburg
    • A. Ultsch, U*-matrix: a tool to visualize clusters in high dimensional data, Technical Report 36, Department of Computer Science, University of Marburg, 2003.
    • (2003)
    • Ultsch, A.1
  • 47
    • 0001449448 scopus 로고    scopus 로고
    • Controlling the magnification factor of self-organizing maps
    • Bauer H.U., Der R., Herrmann M. Controlling the magnification factor of self-organizing maps. Neural Computation 1996, 8(4):757-771.
    • (1996) Neural Computation , vol.8 , Issue.4 , pp. 757-771
    • Bauer, H.U.1    Der, R.2    Herrmann, M.3
  • 49
    • 34249070931 scopus 로고    scopus 로고
    • Explicit magnification control of self-organizing maps for forbidden data
    • Merenyi E., Jain A., Villmann T. Explicit magnification control of self-organizing maps for forbidden data. IEEE Transactions on Neural Networks 2007, 18(3):786-797.
    • (2007) IEEE Transactions on Neural Networks , vol.18 , Issue.3 , pp. 786-797
    • Merenyi, E.1    Jain, A.2    Villmann, T.3
  • 50
    • 33644899424 scopus 로고    scopus 로고
    • Magnification control in self-organizing maps and neural gas
    • Villmann T., Claussen J.C. Magnification control in self-organizing maps and neural gas. Neural Computation 2006, 18:446-469.
    • (2006) Neural Computation , vol.18 , pp. 446-469
    • Villmann, T.1    Claussen, J.C.2
  • 52
    • 0027629412 scopus 로고
    • Rival penalized competitive learning for clustering analysis, RBF net, and curve detection
    • Xu L. Rival penalized competitive learning for clustering analysis, RBF net, and curve detection. IEEE Transaction on Neural Networks 1993, 4(4):636-649.
    • (1993) IEEE Transaction on Neural Networks , vol.4 , Issue.4 , pp. 636-649
    • Xu, L.1
  • 53
    • 0030243661 scopus 로고    scopus 로고
    • Topographic map formation by maximizing unconditional entropy: a plausible strategy for 'on-line' unsupervised competitive learning and nonparametric density estimation
    • Van Hulle M. Topographic map formation by maximizing unconditional entropy: a plausible strategy for 'on-line' unsupervised competitive learning and nonparametric density estimation. IEEE Transactions on Neural Networks 1996, 7(5):1299-1305.
    • (1996) IEEE Transactions on Neural Networks , vol.7 , Issue.5 , pp. 1299-1305
    • Van Hulle, M.1
  • 54
    • 0005671334 scopus 로고    scopus 로고
    • The formation of topographic maps that maximize the average mutual information of the output responses to noiseless input signals
    • Hulle M.M.V. The formation of topographic maps that maximize the average mutual information of the output responses to noiseless input signals. Neural Computation 1997, 9(3):595-606.
    • (1997) Neural Computation , vol.9 , Issue.3 , pp. 595-606
    • Hulle, M.M.V.1
  • 55
    • 0032773697 scopus 로고    scopus 로고
    • Faithful representations with topographic maps
    • Van Hulle M.M. Faithful representations with topographic maps. Neural Networks 1999, 12(6):803-823.
    • (1999) Neural Networks , vol.12 , Issue.6 , pp. 803-823
    • Van Hulle, M.M.1
  • 56
    • 0036506135 scopus 로고    scopus 로고
    • Self-splitting competitive learning: a new on-line clustering paradigm
    • Zhang Y.J., Liu Z.Q. Self-splitting competitive learning: a new on-line clustering paradigm. IEEE Transactions on Neural Networks 2002, 13(2):369-380.
    • (2002) IEEE Transactions on Neural Networks , vol.13 , Issue.2 , pp. 369-380
    • Zhang, Y.J.1    Liu, Z.Q.2
  • 57
    • 2442521332 scopus 로고    scopus 로고
    • Branching competitive learning network: a novel self-creating model
    • Xiong H., Swamy M.N.S. Branching competitive learning network: a novel self-creating model. IEEE Transactions on Neural Networks 2004, 15(2):417-429.
    • (2004) IEEE Transactions on Neural Networks , vol.15 , Issue.2 , pp. 417-429
    • Xiong, H.1    Swamy, M.N.S.2
  • 60
    • 0029270805 scopus 로고
    • Artificial neural networks for feature extraction and multivariate data projection
    • Mao I., Jain A.K. Artificial neural networks for feature extraction and multivariate data projection. IEEE Transactions on Neural Networks 1995, 6(2):296-317.
    • (1995) IEEE Transactions on Neural Networks , vol.6 , Issue.2 , pp. 296-317
    • Mao, I.1    Jain, A.K.2
  • 61
    • 0002432308 scopus 로고
    • Kohonen self-organization feature maps for exploratory data analysis
    • Kulwer Academic Publisher, Dordrecht
    • Ultsch A., Siemon H.P. Kohonen self-organization feature maps for exploratory data analysis. Proceedings of International Neural Network Conference 1990, 305-308. Kulwer Academic Publisher, Dordrecht.
    • (1990) Proceedings of International Neural Network Conference , pp. 305-308
    • Ultsch, A.1    Siemon, H.P.2
  • 63
    • 0242551550 scopus 로고    scopus 로고
    • Teacher-directed learning: information-theoretic competitive learning in supervised multi-layered networks
    • Kamimura R. Teacher-directed learning: information-theoretic competitive learning in supervised multi-layered networks. Connection Science 2003, 15:117-140.
    • (2003) Connection Science , vol.15 , pp. 117-140
    • Kamimura, R.1
  • 64
    • 0035528493 scopus 로고    scopus 로고
    • Information theoretic competitive learning in self-adaptive multi-layered networks
    • Kamimura R. Information theoretic competitive learning in self-adaptive multi-layered networks. Connection Science 2003, 13(4):323-347.
    • (2003) Connection Science , vol.13 , Issue.4 , pp. 323-347
    • Kamimura, R.1
  • 65
    • 0036626892 scopus 로고    scopus 로고
    • Greedy information acquisition algorithm: a new information theoretic approach to dynamic information acquisition in neural networks
    • Kamimura R., Kamimura T., Takeuchi H. Greedy information acquisition algorithm: a new information theoretic approach to dynamic information acquisition in neural networks. Connection Science 2002, 14(2):137-162.
    • (2002) Connection Science , vol.14 , Issue.2 , pp. 137-162
    • Kamimura, R.1    Kamimura, T.2    Takeuchi, H.3
  • 66
    • 0141689654 scopus 로고    scopus 로고
    • Progressive feature extraction by greedy network-growing algorithm
    • Kamimura R. Progressive feature extraction by greedy network-growing algorithm. Complex Systems 2003, 14(2):127-153.
    • (2003) Complex Systems , vol.14 , Issue.2 , pp. 127-153
    • Kamimura, R.1
  • 67
    • 33747068503 scopus 로고    scopus 로고
    • Cooperative information maximization with Gaussian activation functions for self-organizing maps
    • Kamimura R. Cooperative information maximization with Gaussian activation functions for self-organizing maps. IEEE Transactions on Neural Networks 2006, 17(4):909-919.
    • (2006) IEEE Transactions on Neural Networks , vol.17 , Issue.4 , pp. 909-919
    • Kamimura, R.1
  • 68
    • 79751534253 scopus 로고    scopus 로고
    • Forced information for information-theoretic competitive learning, in: Machine Learning, IN-TECH
    • R. Kamimura, Forced information for information-theoretic competitive learning, in: Machine Learning, IN-TECH, 2009, pp. 125-144.
    • (2009) , pp. 125-144
    • Kamimura, R.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.