메뉴 건너뛰기




Volumn 18, Issue 3, 2005, Pages 261-265

Improved local learning rule for information maximization and related applications

Author keywords

Covariance matrix; Hebbian learning; Infomax; Mutual information; Sensory processing

Indexed keywords

DATA PROCESSING; LEARNING ALGORITHMS; LEARNING SYSTEMS; OPTIMIZATION;

EID: 19344364552     PISSN: 08936080     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.neunet.2005.01.002     Document Type: Article
Times cited : (58)

References (9)
  • 1
    • 33749754615 scopus 로고    scopus 로고
    • A new learning algorithm for blind signal separation
    • D.S. Touretzky M.C. Mozer M.E. Hasselmo MIT Press. Cambridge, MA
    • S. Amari, A. Cichocki, and H.H. Yang A new learning algorithm for blind signal separation D.S. Touretzky M.C. Mozer M.E. Hasselmo Advances in neural information processing systems Vol. 8 1996 MIT Press. Cambridge, MA 757 763
    • (1996) Advances in Neural Information Processing Systems , vol.8 , pp. 757-763
    • Amari, S.1    Cichocki, A.2    Yang, H.H.3
  • 2
    • 0034201611 scopus 로고    scopus 로고
    • Adaptive method of realizing natural gradient learning for multilayer perceptrons
    • S. Amari, H. Park, and K. Fukumizu Adaptive method of realizing natural gradient learning for multilayer perceptrons Neural Computation 12 2000 1399 1409
    • (2000) Neural Computation , vol.12 , pp. 1399-1409
    • Amari, S.1    Park, H.2    Fukumizu, K.3
  • 3
    • 0029411030 scopus 로고
    • An information-maximisation approach to blind separation and blind deconvolution
    • A.J. Bell, and T.J. Sejnowski An information-maximisation approach to blind separation and blind deconvolution Neural Comput 7 1995 1129 1159
    • (1995) Neural Comput , vol.7 , pp. 1129-1159
    • Bell, A.J.1    Sejnowski, T.J.2
  • 4
    • 0013309537 scopus 로고    scopus 로고
    • Online algorithms and stochastic approximations
    • D. Saad Cambridge University Press Cambridge
    • L. Bottou Online algorithms and stochastic approximations D. Saad Online learning in neural networks 1998 Cambridge University Press Cambridge 9 42
    • (1998) Online Learning in Neural Networks , pp. 9-42
    • Bottou, L.1
  • 5
    • 0024682770 scopus 로고
    • Updating the inverse of a matrix
    • W.W. Hager Updating the inverse of a matrix SIAM Review 31 1989 221 239
    • (1989) SIAM Review , vol.31 , pp. 221-239
    • Hager, W.W.1
  • 6
    • 0023981750 scopus 로고
    • Self-organization in a perceptual network
    • R. Linsker Self-organization in a perceptual network Computer 21 3 1988 105 117
    • (1988) Computer , vol.21 , Issue.3 , pp. 105-117
    • Linsker, R.1
  • 7
    • 0001525549 scopus 로고
    • Local synaptic learning rules suffice to maximize mutual information in a linear network
    • R. Linsker Local synaptic learning rules suffice to maximize mutual information in a linear network Neural Computation 4 1992 691 702
    • (1992) Neural Computation , vol.4 , pp. 691-702
    • Linsker, R.1
  • 8
    • 0000969444 scopus 로고
    • Deriving receptive fields using an optimal encoding criterion
    • S.J. Hanson J.D. Cowan C.L. Giles Morgan Kaufmann Publishers San Mateo, CA
    • R. Linsker Deriving receptive fields using an optimal encoding criterion S.J. Hanson J.D. Cowan C.L. Giles Advances in neural information processing systems Vol. 5 1993 Morgan Kaufmann Publishers San Mateo, CA 953 960
    • (1993) Advances in Neural Information Processing Systems , vol.5 , pp. 953-960
    • Linsker, R.1
  • 9
    • 0000578525 scopus 로고    scopus 로고
    • A local learning rule that enables information maximization for arbitrary input distributions
    • R. Linsker A local learning rule that enables information maximization for arbitrary input distributions Neural Computation 9 1997 1661 1665
    • (1997) Neural Computation , vol.9 , pp. 1661-1665
    • Linsker, R.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.