메뉴 건너뛰기




Volumn , Issue , 2007, Pages 1779-1784

Forced information maximization to accelerate information-theoretic competitive learning

Author keywords

Competitive learning; Dead neurons; Forced information; Information loss; Mutual information maximization; Winner take all

Indexed keywords

ARTIFICIAL INTELLIGENCE; COMPUTER NETWORKS; EDUCATION; FINANCIAL DATA PROCESSING; INFORMATION THEORY;

EID: 51749117156     PISSN: 10987576     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/IJCNN.2007.4371227     Document Type: Conference Paper
Times cited : (1)

References (13)
  • 2
    • 0035528493 scopus 로고    scopus 로고
    • Flexible feature discovery and structural information
    • R. Kamimura, T. Kamimura, and O. Uchida, "Flexible feature discovery and structural information," Connection Science, vol. 13, no. 4, pp. 323-347, 2001.
    • (2001) Connection Science , vol.13 , Issue.4 , pp. 323-347
    • Kamimura, R.1    Kamimura, T.2    Uchida, O.3
  • 3
    • 0036626892 scopus 로고    scopus 로고
    • Greedy information acquisition algorithm: A new information theoretic approach to dynamic information acquisition in neural networks
    • R. Kamimura, T. Kamimura, and H. Takeuchi, "Greedy information acquisition algorithm: A new information theoretic approach to dynamic information acquisition in neural networks," Connection Science, vol. 14, no. 2, pp. 137-162, 2002.
    • (2002) Connection Science , vol.14 , Issue.2 , pp. 137-162
    • Kamimura, R.1    Kamimura, T.2    Takeuchi, H.3
  • 4
    • 0141689654 scopus 로고    scopus 로고
    • Progressive feature extraction by greedy network-growing algorithm
    • R. Kamimura, "Progressive feature extraction by greedy network-growing algorithm," Complex Systems, vol. 14, no. 2, pp. 127-153, 2003.
    • (2003) Complex Systems , vol.14 , Issue.2 , pp. 127-153
    • Kamimura, R.1
  • 5
    • 0001608026 scopus 로고
    • Feature discovery by competitive learning
    • D. E. Rumelhart and G. E. H. et al, eds, Cambridge: MIT Press
    • D. E. Rumelhart and D. Zipser, "Feature discovery by competitive learning," in Parallel Distributed Processing (D. E. Rumelhart and G. E. H. et al., eds.), vol. 1, pp. 151-193, Cambridge: MIT Press, 1986.
    • (1986) Parallel Distributed Processing , vol.1 , pp. 151-193
    • Rumelhart, D.E.1    Zipser, D.2
  • 6
    • 5244352553 scopus 로고
    • Competitive learning: From interactive activation to adaptive resonance
    • S. Grossberg, "Competitive learning: from interactive activation to adaptive resonance," Cognitive Science, vol. 11, pp. 23-63, 1987.
    • (1987) Cognitive Science , vol.11 , pp. 23-63
    • Grossberg, S.1
  • 8
    • 0025225150 scopus 로고
    • Competitive learning algorithms for vector quantization
    • S. C. Ahalt, A. K. Krishnamurthy, P. Chen, and D. E. Melton, "Competitive learning algorithms for vector quantization," Neural Networks, vol. 3, pp. 277-290, 1990.
    • (1990) Neural Networks , vol.3 , pp. 277-290
    • Ahalt, S.C.1    Krishnamurthy, A.K.2    Chen, P.3    Melton, D.E.4
  • 9
    • 0027629412 scopus 로고
    • Rival penalized competitive learning for clustering analysis, RBF net, and curve detection
    • L. Xu, "Rival penalized competitive learning for clustering analysis, RBF net, and curve detection," IEEE Transaction on Neural Networks, vol. 4, no. 4, pp. 636-649, 1993.
    • (1993) IEEE Transaction on Neural Networks , vol.4 , Issue.4 , pp. 636-649
    • Xu, L.1
  • 10
    • 0003161471 scopus 로고    scopus 로고
    • Properties of the generalized lotto-type competitive learning
    • San Mateo: CA, pp, Morgan Kaufmann Publishers
    • A. Luk and S. Lien, "Properties of the generalized lotto-type competitive learning," in Proceedings ofInternational conference on neural information processing, (San Mateo: CA), pp. 1180-1185, Morgan Kaufmann Publishers, 2000.
    • (2000) Proceedings ofInternational conference on neural information processing , pp. 1180-1185
    • Luk, A.1    Lien, S.2
  • 11
    • 0005671334 scopus 로고    scopus 로고
    • The formation of topographic maps that maximize the average mutual information of the output responses to noiseless input signals
    • M. M. V. Hulle, "The formation of topographic maps that maximize the average mutual information of the output responses to noiseless input signals," Neural Computation, vol. 9, no. 3, pp. 595-606, 1997.
    • (1997) Neural Computation , vol.9 , Issue.3 , pp. 595-606
    • Hulle, M.M.V.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.