메뉴 건너뛰기




Volumn 9, Issue 3, 1997, Pages 595-606

The formation of topographic maps that maximize the average mutual information of the output responses to noiseless input signals

Author keywords

[No Author keywords available]

Indexed keywords


EID: 0005671334     PISSN: 08997667     EISSN: None     Source Type: Journal    
DOI: 10.1162/neco.1997.9.3.595     Document Type: Article
Times cited : (70)

References (15)
  • 1
    • 0029239287 scopus 로고
    • A maximum partial likelihood framework for channel equalization by distribution learning
    • Adali, T., Liu, X., Li, N., & Sönmez, M. K. (1995). A maximum partial likelihood framework for channel equalization by distribution learning. Proc. IEEE NNSP95 (pp. 541-550).
    • (1995) Proc. IEEE NNSP95 , pp. 541-550
    • Adali, T.1    Liu, X.2    Li, N.3    Sönmez, M.K.4
  • 2
    • 5844377027 scopus 로고
    • Predicting ganglion and simple cell receptive field organizations
    • Atick, J. J., & Redlich, A. N. (1991). Predicting ganglion and simple cell receptive field organizations. Intl J. Neural Syst., 1, 305-315.
    • (1991) Intl J. Neural Syst. , vol.1 , pp. 305-315
    • Atick, J.J.1    Redlich, A.N.2
  • 3
    • 0024936898 scopus 로고
    • Adaptive network for optimal linear feature extraction
    • Washington 1989
    • Földiák, P. (1989). Adaptive network for optimal linear feature extraction. In Int'l Joint Conference on Neural Networks (Washington 1989), 1, pp. 401-405.
    • (1989) Int'l Joint Conference on Neural Networks , vol.1 , pp. 401-405
    • Földiák, P.1
  • 4
    • 0000353243 scopus 로고
    • How to generate ordered maps by maximizing the mutual information between input and output signals
    • Linsker, R. (1989). How to generate ordered maps by maximizing the mutual information between input and output signals. Neural Computation, 1, 402-411.
    • (1989) Neural Computation , vol.1 , pp. 402-411
    • Linsker, R.1
  • 5
    • 0001525549 scopus 로고
    • Local synaptic learning rules suffice to maximize mutual information in a linear network
    • Linsker, R. (1992). Local synaptic learning rules suffice to maximize mutual information in a linear network. Neural Computation, 4, 691-702.
    • (1992) Neural Computation , vol.4 , pp. 691-702
    • Linsker, R.1
  • 6
    • 0029237710 scopus 로고
    • A robust backward adaptive quantizer
    • Cambridge, MA, 1995
    • Martinez, D., & Yang, W. (1995). A robust backward adaptive quantizer. Proc. IEEE NNSP95 (Cambridge, MA, 1995), (pp. 531-540).
    • (1995) Proc. IEEE NNSP95 , pp. 531-540
    • Martinez, D.1    Yang, W.2
  • 8
    • 0002754742 scopus 로고    scopus 로고
    • Nonlinear blind source separation by self-organizing maps
    • S.-I. Amari, L. Xu, L.-W. Chun, I. King, and K.-S. Leung (Eds.), Progress in neural information processing
    • Pajunen, P., Hyvärinen, A., & Karhunen, J. (1996). Nonlinear blind source separation by self-organizing maps. In S.-I. Amari, L. Xu, L.-W. Chun, I. King, and K.-S. Leung (Eds.), Progress in neural information processing (pp. 1207-1210). Proceedings of the International Conference on Neural Information Processing.
    • (1996) Proceedings of the International Conference on Neural Information Processing , pp. 1207-1210
    • Pajunen, P.1    Hyvärinen, A.2    Karhunen, J.3
  • 10
    • 0028262811 scopus 로고
    • Maximum mutual information neural networks for hybrid connectionist-HMM speech recognition systems
    • Rigoll, G. (1994). Maximum mutual information neural networks for hybrid connectionist-HMM speech recognition systems. IEEE Trans. Speech and Audio Processing, 2, 175-184.
    • (1994) IEEE Trans. Speech and Audio Processing , vol.2 , pp. 175-184
    • Rigoll, G.1
  • 12
    • 0025164912 scopus 로고
    • Development of feature detectors for self-organization
    • Rubner, J., & Schulten, K. (1990). Development of feature detectors for self-organization. Biol. Cybern., 62, 193-199.
    • (1990) Biol. Cybern. , vol.62 , pp. 193-199
    • Rubner, J.1    Schulten, K.2
  • 13
    • 0002937051 scopus 로고
    • An optimality principle for unsupervised learning
    • D. S. Touretzky (Ed.), San Mateo, CA: Morgan Kaufmann
    • Sanger, T. (1989). An optimality principle for unsupervised learning. In D. S. Touretzky (Ed.), Advances in neural information processing systems 1 (pp. 11-19). San Mateo, CA: Morgan Kaufmann.
    • (1989) Advances in Neural Information Processing Systems 1 , pp. 11-19
    • Sanger, T.1
  • 15
    • 85079214161 scopus 로고
    • A family of MLP based nonlinear spectral estimators for noise reduction
    • Xie, E, & Van Compernolle, D. (1994). A family of MLP based nonlinear spectral estimators for noise reduction. Proc. ICASSP'94,2 (pp. 53-56).
    • (1994) Proc. ICASSP'94 , vol.2 , pp. 53-56
    • Xie, E.1    Van Compernolle, D.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.