메뉴 건너뛰기




Volumn 27, Issue 3, 2011, Pages 359-367

Bayesian ensemble methods for survival prediction in gene expression data

Author keywords

[No Author keywords available]

Indexed keywords

ARTICLE; BAYES THEOREM; BIOLOGICAL MODEL; BRAIN TUMOR; BREAST TUMOR; DNA MICROARRAY; FEMALE; GENE EXPRESSION PROFILING; GENE EXPRESSION REGULATION; GENETICS; HUMAN; METHODOLOGY; SURVIVAL;

EID: 79551610418     PISSN: 13674803     EISSN: 14602059     Source Type: Journal    
DOI: 10.1093/bioinformatics/btq660     Document Type: Article
Times cited : (68)

References (52)
  • 1
    • 0029026344 scopus 로고
    • Redefinition of the coding sequence of the MXI1 gene and identification of a polymorphic repeat in the 3-prime non-coding region that allows the detection of loss of heterozygosity of chromosome 10q25 in glioblastomas
    • Albarosa,R. et al. (1995) Redefinition of the coding sequence of the MXI1 gene and identification of a polymorphic repeat in the 3-prime non-coding region that allows the detection of loss of heterozygosity of chromosome 10q25 in glioblastomas. Hum. Genet., 95, 709-711.
    • (1995) Hum. Genet. , vol.95 , pp. 709-711
    • Albarosa, R.1
  • 2
    • 21044455139 scopus 로고    scopus 로고
    • Patterns of gene expression that characterize long-term survival in advanced stage serous ovarian cancers
    • Berchuck,A. et al. (2005) Patterns of gene expression that characterize long-term survival in advanced stage serous ovarian cancers. Clin. Cancer Res., 11, 3686-3696.
    • (2005) Clin. Cancer Res. , vol.11 , pp. 3686-3696
    • Berchuck, A.1
  • 3
    • 61449157892 scopus 로고    scopus 로고
    • Incorporating pathway information into boosting estimation of high-dimensional risk prediction models
    • Binder,H. and Schumacher,M. (2009) Incorporating pathway information into boosting estimation of high-dimensional risk prediction models. BMC Bioinformatics, 10, 18.
    • (2009) BMC Bioinformatics , vol.10 , pp. 18
    • Binder, H.1    Schumacher, M.2
  • 4
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • Breiman,L. (1996) Bagging predictors. Mach. Learn., 24, 123-140.
    • (1996) Mach. Learn. , vol.24 , pp. 123-140
    • Breiman, L.1
  • 5
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • Breiman,L. (2001) Random forests. Mach. Learn., 45, 5-32.
    • (2001) Mach. Learn. , vol.45 , pp. 5-32
    • Breiman, L.1
  • 6
    • 77957997221 scopus 로고    scopus 로고
    • Bagged gene shaving for the robust clustering of highthroughput data
    • Broom,B.M. et al. (2010) Bagged gene shaving for the robust clustering of highthroughput data. Int. J. Bioinformatics Res. Appl., 6, 326-343.
    • (2010) Int. J. Bioinformatics Res. Appl. , vol.6 , pp. 326-343
    • Broom, B.M.1
  • 7
    • 54549108740 scopus 로고    scopus 로고
    • Comprehensive genomic characterization defines human glioblastoma genes and core pathways
    • The Cancer Genome Atlas Research Network
    • The Cancer Genome Atlas Research Network. (2008) Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature, 455, 1061-1068.
    • (2008) Nature , vol.455 , pp. 1061-1068
  • 8
    • 34249981509 scopus 로고    scopus 로고
    • Prognostic significance of host immune gene polymorphisms in follicular lymphoma survival
    • Cerhan,J.R. et al. (2007) Prognostic significance of host immune gene polymorphisms in follicular lymphoma survival. Blood, 109, 5439-5446.
    • (2007) Blood , vol.109 , pp. 5439-5446
    • Cerhan, J.R.1
  • 9
    • 0032346848 scopus 로고    scopus 로고
    • Bayesian CART model search (with discussion)
    • Chipman,H.A. et al. (1998) Bayesian CART model search (with discussion). J. Am. Stat. Assoc., 93, 935-960.
    • (1998) J. Am. Stat. Assoc. , vol.93 , pp. 935-960
    • Chipman, H.A.1
  • 10
    • 77952543458 scopus 로고    scopus 로고
    • BART: Bayesian Additive Regression Trees
    • Chipman,H.A. et al. (2010) BART: Bayesian Additive Regression Trees. Ann. Appl. Stat., 4, 266-298.
    • (2010) Ann. Appl. Stat. , vol.4 , pp. 266-298
    • Chipman, H.A.1
  • 11
    • 41949128553 scopus 로고    scopus 로고
    • Bayesian Weibull tree models for survival analysis of clinico-genomic data
    • Clarke,J. and West,M. (2008) Bayesian Weibull tree models for survival analysis of clinico-genomic data. Stat. Methodol., 5, 238-262.
    • (2008) Stat. Methodol. , vol.5 , pp. 238-262
    • Clarke, J.1    West, M.2
  • 12
    • 0000336139 scopus 로고
    • Regression models and life tables
    • Cox,D. (1972) Regression models and life tables. J. R. Stat. Soc. B, 34, 187-220.
    • (1972) J. R. Stat. Soc. B , vol.34 , pp. 187-220
    • Cox, D.1
  • 13
    • 34247259498 scopus 로고    scopus 로고
    • Predicting patient survival from microarray data by accelerated failure time modeling using partial least squares and LASSO
    • Datta,S. et al. (2007) Predicting patient survival from microarray data by accelerated failure time modeling using partial least squares and LASSO. Biometrics, 63, 259-271.
    • (2007) Biometrics , vol.63 , pp. 259-271
    • Datta, S.1
  • 14
    • 0000228535 scopus 로고    scopus 로고
    • A Bayesian CART algorithm
    • Denison,D. et al. (1998) A Bayesian CART algorithm. Biometrika, 85, 363-377.
    • (1998) Biometrika , vol.85 , pp. 363-377
    • Denison, D.1
  • 15
    • 28644449917 scopus 로고    scopus 로고
    • How does gene expression clustering work?
    • D'haeseleer,P. (2005) How does gene expression clustering work? Nat. Biotechnol., 23, 1499-1501.
    • (2005) Nat. Biotechnol. , vol.23 , pp. 1499-1501
    • D'haeseleer, P.1
  • 16
    • 0035470889 scopus 로고    scopus 로고
    • Greedy function approximation: a gradient boosting machine
    • Friedman,J.H. (2001) Greedy function approximation: a gradient boosting machine. Ann. Stat., 29, 1189-1232.
    • (2001) Ann. Stat. , vol.29 , pp. 1189-1232
    • Friedman, J.H.1
  • 17
    • 15944406764 scopus 로고    scopus 로고
    • PHLPP: a phosphatase that directly dephosphorylates Akt, promotes apoptosis, and suppresses tumor growth
    • Gao,T. et al. (2005) PHLPP: a phosphatase that directly dephosphorylates Akt, promotes apoptosis, and suppresses tumor growth. Mol. Cell, 18, 13-24.
    • (2005) Mol. Cell , vol.18 , pp. 13-24
    • Gao, T.1
  • 19
    • 0033619170 scopus 로고    scopus 로고
    • Assessment and comparison of prognostic classification schemes for survival data
    • Graf,E. et al. (1999) Assessment and comparison of prognostic classification schemes for survival data. Stat. Med., 18, 2529-2545.
    • (1999) Stat. Med. , vol.18 , pp. 2529-2545
    • Graf, E.1
  • 20
    • 21444446838 scopus 로고    scopus 로고
    • Penalized Cox regression analysis in the high-dimensional and low-sample size settings, with applications to microarray gene expression data
    • Gui,J. and Li,H. (2005) Penalized Cox regression analysis in the high-dimensional and low-sample size settings, with applications to microarray gene expression data. Bioinformatics, 21, 3001-3008.
    • (2005) Bioinformatics , vol.21 , pp. 3001-3008
    • Gui, J.1    Li, H.2
  • 22
    • 0034568109 scopus 로고    scopus 로고
    • Gene shaving' as a method for identifying distinct sets of genes with similar expression patterns
    • Hastie,T. et al. (2000). 'Gene shaving' as a method for identifying distinct sets of genes with similar expression patterns. Genome Biol., 1, RESEARCH0003.
    • (2000) Genome Biol. , vol.1
    • Hastie, T.1
  • 23
    • 0037044762 scopus 로고    scopus 로고
    • Cloning and characterization of GRIPE, a novel interacting partner of the transcription factor E12 in developing mouse forebrain
    • Heng,J.I. and Tan,S.-S. (2002) Cloning and characterization of GRIPE, a novel interacting partner of the transcription factor E12 in developing mouse forebrain. J. Biol. Chem., 277, 43152-43159.
    • (2002) J. Biol. Chem. , vol.277 , pp. 43152-43159
    • Heng, J.I.1    Tan, S.-S.2
  • 24
    • 0346656880 scopus 로고    scopus 로고
    • Bagging survival trees
    • Hothorn,T. et al. (2004) Bagging survival trees. Stat. Med., 23, 77-91.
    • (2004) Stat. Med. , vol.23 , pp. 77-91
    • Hothorn, T.1
  • 25
    • 33745466826 scopus 로고    scopus 로고
    • Survival ensembles
    • Hothorn,T. et al. (2006) Survival ensembles. Biostatistics, 7, 355-373.
    • (2006) Biostatistics , vol.7 , pp. 355-373
    • Hothorn, T.1
  • 27
    • 4944264367 scopus 로고    scopus 로고
    • Relative risk forests for exercise heart rate recovery as a predictor of mortality
    • Ishwaran,H. et al. (2004) Relative risk forests for exercise heart rate recovery as a predictor of mortality. J. Am. Stat. Assoc., 99, 591-600.
    • (2004) J. Am. Stat. Assoc. , vol.99 , pp. 591-600
    • Ishwaran, H.1
  • 28
    • 57449111248 scopus 로고    scopus 로고
    • Random survival forests
    • Ishwaran,H. et al. (2008) Random survival forests. Ann. Appl. Stat., 2, 841-860.
    • (2008) Ann. Appl. Stat. , vol.2 , pp. 841-860
    • Ishwaran, H.1
  • 29
    • 0001509344 scopus 로고
    • Non-parametric Bayesian analysis of survival time data
    • Kalbfleisch,J.D. (1978) Non-parametric Bayesian analysis of survival time data. J. R. Stat. Soc. B, 40, 214-221.
    • (1978) J. R. Stat. Soc. B , vol.40 , pp. 214-221
    • Kalbfleisch, J.D.1
  • 31
    • 33748688753 scopus 로고    scopus 로고
    • Bayesian methods for variable selection in survival models with application to DNA microarray data
    • Lee,K.E. and Mallick,B.K. (2004) Bayesian methods for variable selection in survival models with application to DNA microarray data. Sankhya, 66, 756-778.
    • (2004) Sankhya , vol.66 , pp. 756-778
    • Lee, K.E.1    Mallick, B.K.2
  • 32
    • 10444280144 scopus 로고    scopus 로고
    • An extensive comparison of recent classification tools applied to microarray data
    • Lee,J.W. et al. (2005) An extensive comparison of recent classification tools applied to microarray data. Comput. Stat. Data Anal., 48, 869-885.
    • (2005) Comput. Stat. Data Anal. , vol.48 , pp. 869-885
    • Lee, J.W.1
  • 33
    • 12744266814 scopus 로고    scopus 로고
    • Partial Cox regression analysis for high-dimensional microarray gene expression data
    • Li,H. and Gui,J. (2004) Partial Cox regression analysis for high-dimensional microarray gene expression data. Bioinformatics, 20, i208-i215.
    • (2004) Bioinformatics , vol.20
    • Li, H.1    Gui, J.2
  • 34
    • 43949121435 scopus 로고    scopus 로고
    • Bayesian analysis of mass spectrometry data using waveletbased functional mixed models
    • Morris,J.S. et al. (2008) Bayesian analysis of mass spectrometry data using waveletbased functional mixed models. Biometrics, 64, 479-489.
    • (2008) Biometrics , vol.64 , pp. 479-489
    • Morris, J.S.1
  • 35
    • 10844254626 scopus 로고    scopus 로고
    • Optimal sample size for multiple testing: the case of gene expression microarrays
    • Müeller, P., Parmigiani, G., Robert, C., and Rousseau, J. (2004) Optimal sample size for multiple testing: the case of gene expression microarrays. J. Am. Stat. Assoc., 99, 990-1001.
    • (2004) J. Am. Stat. Assoc. , vol.99 , pp. 990-1001
    • Müeller, P.1    Parmigiani, G.2    Robert, C.3    Rousseau, J.4
  • 36
    • 4444235995 scopus 로고    scopus 로고
    • Detecting differential gene expression with a semiparametric hierarchical mixture method
    • Newton,M.A. et al. (2004) Detecting differential gene expression with a semiparametric hierarchical mixture method. Biostatistics, 5, 155-176.
    • (2004) Biostatistics , vol.5 , pp. 155-176
    • Newton, M.A.1
  • 37
    • 0036956225 scopus 로고    scopus 로고
    • Partial least squares proportional hazard regression for application to DNA microarray survival data
    • Nguyen,D.V. and Rocke,D.M. (2002) Partial least squares proportional hazard regression for application to DNA microarray survival data. Bioinformatics, 18, 1625-1632.
    • (2002) Bioinformatics , vol.18 , pp. 1625-1632
    • Nguyen, D.V.1    Rocke, D.M.2
  • 38
    • 0242634343 scopus 로고    scopus 로고
    • Linking gene expression data with patient survival times using partial least squares
    • Park,P.J. et al. (2002) Linking gene expression data with patient survival times using partial least squares. Bioinformatics, 18, S120-S127.
    • (2002) Bioinformatics , vol.18
    • Park, P.J.1
  • 39
    • 16644362104 scopus 로고    scopus 로고
    • Bayesian analysis of binary prediction tree models for retrospectively sampled outcomes
    • Pittman,J. et al. (2004) Bayesian analysis of binary prediction tree models for retrospectively sampled outcomes. Biostatistics, 5, 587-601.
    • (2004) Biostatistics , vol.5 , pp. 587-601
    • Pittman, J.1
  • 40
    • 68849107487 scopus 로고    scopus 로고
    • Multigene classifiers, prognostic factors, and predictors of breast cancer clinical outcome
    • Ross,J.S. (2009) Multigene classifiers, prognostic factors, and predictors of breast cancer clinical outcome. Adv. Anat. Pathol., 16, 204-215.
    • (2009) Adv. Anat. Pathol. , vol.16 , pp. 204-215
    • Ross, J.S.1
  • 41
    • 47349125398 scopus 로고    scopus 로고
    • Flexible boosting of accelerated failure time models
    • Schmid,M. and Hothorn,T. (2008) Flexible boosting of accelerated failure time models. BMC Bioinformatics, 9, 269.
    • (2008) BMC Bioinformatics , vol.9 , pp. 269
    • Schmid, M.1    Hothorn, T.2
  • 42
    • 34547863496 scopus 로고    scopus 로고
    • Assessment of survival prediction models based on microarray data
    • Schumacher,M. et al. (2007) Assessment of survival prediction models based on microarray data. Bioinformatics, 23, 1768-1774.
    • (2007) Bioinformatics , vol.23 , pp. 1768-1774
    • Schumacher, M.1
  • 43
    • 33748686773 scopus 로고    scopus 로고
    • Bayesian variable selection for the analysis of microarray data with censored outcomes
    • Sha,N. et al. (2006) Bayesian variable selection for the analysis of microarray data with censored outcomes. Bioinformatics, 22, 2262-2268.
    • (2006) Bioinformatics , vol.22 , pp. 2262-2268
    • Sha, N.1
  • 44
    • 84920321315 scopus 로고    scopus 로고
    • Cloning and characterization of BAI2 and BAI3, novel genes homologous to brain-specific angiogenesis inhibitor 1 (BAI1)
    • Shiratsuchi,T. et al. (1997) Cloning and characterization of BAI2 and BAI3, novel genes homologous to brain-specific angiogenesis inhibitor 1 (BAI1). Cytogenet. Cell Genet., 79, 103-108.
    • (1997) Cytogenet. Cell Genet. , vol.79 , pp. 103-108
    • Shiratsuchi, T.1
  • 45
    • 0345822598 scopus 로고    scopus 로고
    • The positive false discovery rate: a Bayesian interpretation and the q-value
    • Storey,J.D. (2003) The positive false discovery rate: a Bayesian interpretation and the q-value. Ann. Stat., 31, 2013-2035.
    • (2003) Ann. Stat. , vol.31 , pp. 2013-2035
    • Storey, J.D.1
  • 46
    • 84950758368 scopus 로고
    • The calculation of posterior distributions by data augmentation
    • Tanner,T. and Wong, W. (1987) The calculation of posterior distributions by data augmentation. J. Am. Stat. Assoc., 82, 528-549.
    • (1987) J. Am. Stat. Assoc. , vol.82 , pp. 528-549
    • Tanner, T.1    Wong, W.2
  • 47
    • 0032213515 scopus 로고    scopus 로고
    • Multinuclearity and increased ploidy caused by overexpression of the aurora- and Ipl1-like midbody-associated protein mitotic kinase in human cancer cells
    • Tatsuka,M. et al. (1998) Multinuclearity and increased ploidy caused by overexpression of the aurora- and Ipl1-like midbody-associated protein mitotic kinase in human cancer cells. Cancer Res., 58, 4811-4816.
    • (1998) Cancer Res. , vol.58 , pp. 4811-4816
    • Tatsuka, M.1
  • 48
    • 0031015557 scopus 로고    scopus 로고
    • The Lasso method for variable selection in the Cox model
    • Tibshirani,R. (1997) The Lasso method for variable selection in the Cox model. Stat. Med., 16, 385-395.
    • (1997) Stat. Med. , vol.16 , pp. 385-395
    • Tibshirani, R.1
  • 49
    • 18244409687 scopus 로고    scopus 로고
    • Gene expression profiling predicts clinical outcome of breast cancer
    • Van't Veer,L.J. et al. (2002) Gene expression profiling predicts clinical outcome of breast cancer. Nature, 415, 530-536.
    • (2002) Nature , vol.415 , pp. 530-536
    • Van't Veer, L.J.1
  • 50
    • 60349120810 scopus 로고    scopus 로고
    • Survival prediction using gene expression data: a review and comparison
    • van Wieringen,W.N. et al. (2009) Survival prediction using gene expression data: a review and comparison. Comput. Stat. Data Anal., 53, 1590-1603.
    • (2009) Comput. Stat. Data Anal. , vol.53 , pp. 1590-1603
    • van Wieringen, W.N.1
  • 51
    • 11144244638 scopus 로고    scopus 로고
    • Epidermal growth factor receptor-deficient mice have delayed primary endochondral ossification because of defective osteoclast recruitment
    • Wang,K. et al. (2004) Epidermal growth factor receptor-deficient mice have delayed primary endochondral ossification because of defective osteoclast recruitment. J. Biol. Chem., 279, 53848-53856.
    • (2004) J. Biol. Chem. , vol.279 , pp. 53848-53856
    • Wang, K.1
  • 52
    • 0242295767 scopus 로고    scopus 로고
    • Bayesian factor regression models in the "large p, small n" paradigm
    • Bernardo,J.M. et al. (eds) Oxford University Press, NewYork
    • West,M. (2003) Bayesian factor regression models in the "large p, small n" paradigm. In Bernardo,J.M. et al. (eds) Bayesian Statistics 7. Oxford University Press, NewYork, pp. 733-742.
    • (2003) Bayesian Statistics , vol.7 , pp. 733-742
    • West, M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.