메뉴 건너뛰기




Volumn 3, Issue 3, 2010, Pages 187-199

Memetic pareto differential evolutionary artificial neural networks to determine growth multi-classes in predictive microbiology

Author keywords

Differential evolution; Memetic algorithms; Multiclassification; Multiobjective; Neural networks; Predictive microbiology

Indexed keywords

DIFFERENTIAL EVOLUTION; MEMETIC ALGORITHMS; MULTI OBJECTIVE; MULTI-CLASSIFICATION; PREDICTIVE MICRO-BIOLOGY;

EID: 78650172837     PISSN: 18645909     EISSN: 18645917     Source Type: Journal    
DOI: 10.1007/s12065-010-0045-9     Document Type: Article
Times cited : (21)

References (49)
  • 1
    • 84944892396 scopus 로고    scopus 로고
    • A memetic pareto evolutionary approach to artificial neural networks
    • In: Brooks M, Corbet D, Stumptner M (eds), Springer
    • Abbass HA (2001) A memetic pareto evolutionary approach to artificial neural networks. In: Brooks M, Corbet D, Stumptner M (eds) AI2001. LNAI 2256, Springer, pp 1-12.
    • (2001) AI2001. LNAI 2256 , pp. 1-12
    • Abbass, H.A.1
  • 2
    • 0034876065 scopus 로고    scopus 로고
    • Pde: a pareto-frontier differential evolution approach for multi-objective optimization problems
    • Seoul, South Korea
    • Abbass HA, Sarker R, Newton C (2001) Pde: a pareto-frontier differential evolution approach for multi-objective optimization problems. In: Proceedings of the 2001 congress on evolutionary computation, vol 2. Seoul, South Korea.
    • (2001) Proceedings of the 2001 congress on evolutionary computation , vol.2
    • Abbass, H.A.1    Sarker, R.2    Newton, C.3
  • 3
    • 0029112191 scopus 로고
    • Mathematics of predictive food microbiology
    • Baranyi J, Roberts T (1995) Mathematics of predictive food microbiology. Int J Food Microbiol 26: 199-218.
    • (1995) Int J Food Microbiol , vol.26 , pp. 199-218
    • Baranyi, J.1    Roberts, T.2
  • 4
    • 0030086746 scopus 로고    scopus 로고
    • Effects of parameterization on the performance of empirical models used in predictive microbiology
    • Baranyi J, Ross T, McMeekin TA, Roberts TA (1996) Effects of parameterization on the performance of empirical models used in predictive microbiology. Int J Food Microbiol 13: 83-91.
    • (1996) Int J Food Microbiol , vol.13 , pp. 83-91
    • Baranyi, J.1    Ross, T.2    McMeekin, T.A.3    Roberts, T.A.4
  • 5
    • 34548677479 scopus 로고    scopus 로고
    • A lot of randomness is hiding in accuracy
    • Ben-David A (2007) A lot of randomness is hiding in accuracy. Eng Appl Artif Intell 20(7): 875-885.
    • (2007) Eng Appl Artif Intell , vol.20 , Issue.7 , pp. 875-885
    • Ben-David, A.1
  • 7
    • 0027949037 scopus 로고
    • Expansion of response surface analysis for the growth of Escherichia coli O157:H7 to include sodium nitrite as a variable
    • Buchanan RLB (1993) Expansion of response surface analysis for the growth of Escherichia coli O157: H7 to include sodium nitrite as a variable. Int J Food Microbiol 23: 317-332.
    • (1993) Int J Food Microbiol , vol.23 , pp. 317-332
    • Buchanan, R.L.B.1
  • 9
    • 0026087216 scopus 로고
    • Applicability of the Davey, (linear Arrhenius) predictive model to the lag phase of microbial growth
    • Davey K (1991) Applicability of the Davey, (linear Arrhenius) predictive model to the lag phase of microbial growth. J Appl Bacteriol 70: 253-257.
    • (1991) J Appl Bacteriol , vol.70 , pp. 253-257
    • Davey, K.1
  • 10
    • 0036530772 scopus 로고    scopus 로고
    • A fast and elitist multiobjective genetic algorithm: Nsga2
    • Deb K, Pratab A, Agarwal S, Meyarivan T (2002) A fast and elitist multiobjective genetic algorithm: Nsga2. IEEE Trans Evol Comput 6(2): 182-197.
    • (2002) IEEE Trans Evol Comput , vol.6 , Issue.2 , pp. 182-197
    • Deb, K.1    Pratab, A.2    Agarwal, S.3    Meyarivan, T.4
  • 11
    • 70350633267 scopus 로고    scopus 로고
    • Memetic pareto differential evolution for designing artificial neural networks in multiclassification problems using cross-entropy versus sensitivity
    • Springer, Berlin
    • Fernández JC, Hervás C, Martínez FJ, Gutiérrez PA, Cruz M (2009) Memetic pareto differential evolution for designing artificial neural networks in multiclassification problems using cross-entropy versus sensitivity. In: Hybrid artificial intelligence systems, vol 5572. Springer, Berlin, pp 433-441.
    • (2009) Hybrid artificial intelligence systems , vol.5572 , pp. 433-441
    • Fernández, J.C.1    Hervás, C.2    Martínez, F.J.3    Gutiérrez, P.A.4    Cruz, M.5
  • 12
    • 77951937354 scopus 로고    scopus 로고
    • Sensitivity versus accuracy in multi-class problems using memetic pareto evolutionary neural networks
    • Fernández JC, Martínez FJ, Hervás C, Gutiérrez PA (2010) Sensitivity versus accuracy in multi-class problems using memetic pareto evolutionary neural networks. IEEE Trans Neural Netw 21(5): 750-770.
    • (2010) IEEE Trans Neural Netw , vol.21 , Issue.5 , pp. 750-770
    • Fernández, J.C.1    Martínez, F.J.2    Hervás, C.3    Gutiérrez, P.A.4
  • 18
    • 0037196182 scopus 로고    scopus 로고
    • Improving artificial neural networks with a pruning methodology and genetic algorithms for their application in microbial growth prediction in food
    • Garcia-Gimeno RM, Hervas-Martinez C, de Siloniz MI (2002) Improving artificial neural networks with a pruning methodology and genetic algorithms for their application in microbial growth prediction in food. Int J Food Microbiol 72(1-2): 19-30.
    • (2002) Int J Food Microbiol , vol.72 , Issue.1-2 , pp. 19-30
    • Garcia-Gimeno, R.M.1    Hervas-Martinez, C.2    de Siloniz, M.I.3
  • 19
    • 0036859210 scopus 로고    scopus 로고
    • Learning in the multiple class random neural network
    • Gelenbe E, Hussain KF (2002) Learning in the multiple class random neural network. IEEE Trans Neural Netw 13(6): 1257-1267.
    • (2002) IEEE Trans Neural Netw , vol.13 , Issue.6 , pp. 1257-1267
    • Gelenbe, E.1    Hussain, K.F.2
  • 20
    • 0036064637 scopus 로고    scopus 로고
    • A probabilistic neural network approach for modeling and classification of bacterial growth/no-growth data
    • Hajmeer M, Basheer I (2002) A probabilistic neural network approach for modeling and classification of bacterial growth/no-growth data. J Microbiol Methods 51: 217-226.
    • (2002) J Microbiol Methods , vol.51 , pp. 217-226
    • Hajmeer, M.1    Basheer, I.2
  • 21
    • 0031031431 scopus 로고    scopus 로고
    • Computational neural networks for predictive microbiology: II. Application to microbe growth
    • Hajmeer M, Basheer I, Najjar Y (1997) Computational neural networks for predictive microbiology: II. Application to microbe growth. Int J Food Microbiol 34: 51-66.
    • (1997) Int J Food Microbiol , vol.34 , pp. 51-66
    • Hajmeer, M.1    Basheer, I.2    Najjar, Y.3
  • 22
    • 0037447914 scopus 로고    scopus 로고
    • A hybrid bayesian-neural network approach for probabilistic modeling of bacterial growth/no-growth interface
    • Hajmeer MN, Basheer IA (2003) A hybrid bayesian-neural network approach for probabilistic modeling of bacterial growth/no-growth interface. Int J Food Microbiol 82: 233-243.
    • (2003) Int J Food Microbiol , vol.82 , pp. 233-243
    • Hajmeer, M.N.1    Basheer, I.A.2
  • 23
    • 33750620318 scopus 로고    scopus 로고
    • Reliability-based estimation of the survival of listeria monocytogenes in chorizos
    • Hajmeer MN, Basheer IA, Cliver DO (2006) Reliability-based estimation of the survival of listeria monocytogenes in chorizos. J Sci Food Agric 86(14): 2337-2344.
    • (2006) J Sci Food Agric , vol.86 , Issue.14 , pp. 2337-2344
    • Hajmeer, M.N.1    Basheer, I.A.2    Cliver, D.O.3
  • 24
    • 0035648084 scopus 로고    scopus 로고
    • Optimization of computational neural network for its application in the prediction of microbial growth in foods
    • Hervas C, Zurera G, Garcia RM, Martinez JA (2001) Optimization of computational neural network for its application in the prediction of microbial growth in foods. Food Sci Technol Int 7(2): 159-163.
    • (2001) Food Sci Technol Int , vol.7 , Issue.2 , pp. 159-163
    • Hervas, C.1    Zurera, G.2    Garcia, R.M.3    Martinez, J.A.4
  • 26
    • 0001590498 scopus 로고
    • Construction of and comparison between response surface analysis for Aeromonas hydrophila ATCC 7966 and food isolate under aerobic conditions
    • Hudson J (1992) Construction of and comparison between response surface analysis for Aeromonas hydrophila ATCC 7966 and food isolate under aerobic conditions. J Food Prot 55: 968-972.
    • (1992) J Food Prot , vol.55 , pp. 968-972
    • Hudson, J.1
  • 28
    • 0037238922 scopus 로고    scopus 로고
    • Empirical evaluation of the improved rprop learning algorithms
    • Igel C, Hüsken M (2003) Empirical evaluation of the improved rprop learning algorithms. Neurocomputing 50(6): 105-123.
    • (2003) Neurocomputing , vol.50 , Issue.6 , pp. 105-123
    • Igel, C.1    Hüsken, M.2
  • 29
    • 43449135303 scopus 로고    scopus 로고
    • Pareto-based multiobjective machine learning: an overview and case studies
    • Jin Y, Sendhoff B (2008) Pareto-based multiobjective machine learning: an overview and case studies. IEEE Trans Syst Man Cybern C Appl Rev 38(3): 397-415.
    • (2008) IEEE Trans Syst Man Cybern C Appl Rev , vol.38 , Issue.3 , pp. 397-415
    • Jin, Y.1    Sendhoff, B.2
  • 30
    • 18044364268 scopus 로고    scopus 로고
    • Development of a safety mon itoring and assurance system for chilled food products
    • Koutsoumanis K, Taoukis P, Nychas G (2005) Development of a safety mon itoring and assurance system for chilled food products. Int J Food Microbiol 100(1-3): 253-260.
    • (2005) Int J Food Microbiol , vol.100 , Issue.1-3 , pp. 253-260
    • Koutsoumanis, K.1    Taoukis, P.2    Nychas, G.3
  • 31
    • 18044371474 scopus 로고    scopus 로고
    • Methods to determine the growth domain in a multidimensional environmental space
    • Le Marc Y, Pin C, Baranyi J (2002) Methods to determine the growth domain in a multidimensional environmental space. Int J Food Microbiol 100(1-3): 312.
    • (2002) Int J Food Microbiol , vol.100 , Issue.1-3 , pp. 312
    • Le Marc, Y.1    Pin, C.2    Baranyi, J.3
  • 34
    • 0242655516 scopus 로고    scopus 로고
    • A gentle introduction to memetic algorithms. In: Handbook of Metaheuristics
    • Springer, New York
    • Moscato P, Cotta C (2003) A gentle introduction to memetic algorithms. In: Handbook of Metaheuristics. International series in operations research and management science, vol 57. Springer, New York, pp 105-144.
    • (2003) International series in operations research and management science , vol.57 , pp. 105-144
    • Moscato, P.1    Cotta, C.2
  • 35
    • 78650169880 scopus 로고
    • Machine learning: a theoretical approach. Morgan Kaufmann
    • ISBN: 1558601481
    • Natarajan BK (1991) Machine learning: a theoretical approach. Morgan Kaufmann, San Mateo. ISBN: 1558601481.
    • (1991) San Mateo
    • Natarajan, B.K.1
  • 36
    • 0001473637 scopus 로고
    • A descriptive model of mold growth and aflatoxin formation as affected by environmental conditions
    • Pitt R (1992) A descriptive model of mold growth and aflatoxin formation as affected by environmental conditions. J Food Prot 56: 139-146.
    • (1992) J Food Prot , vol.56 , pp. 139-146
    • Pitt, R.1
  • 37
    • 0031834558 scopus 로고    scopus 로고
    • Modelling the growth limits (growth/no growth interface) of Escherichia coli as a function of temperature, pH, lactic acid concentration and water activity
    • Presser K, Ross T, Ratkowsky D (1998) Modelling the growth limits (growth/no growth interface) of Escherichia coli as a function of temperature, pH, lactic acid concentration and water activity. Appl Environ Microbiol 64(5): 1773-1779.
    • (1998) Appl Environ Microbiol , vol.64 , Issue.5 , pp. 1773-1779
    • Presser, K.1    Ross, T.2    Ratkowsky, D.3
  • 38
    • 85153946716 scopus 로고
    • Pairwise neural network classifiers with probabilistic outputs
    • Tesauro G, Touretzky DS, Leen TK (eds), (NIPS Conference, Denver, Colorado, USA, 1994). MIT Press, Cambridge
    • Price D, Knerr S, Personnaz L, Dreyfus G (1995) Pairwise neural network classifiers with probabilistic outputs. In: Tesauro G, Touretzky DS, Leen TK (eds) Advances in neural information processing systems 7 (NIPS Conference, Denver, Colorado, USA, 1994). MIT Press, Cambridge, pp 1109-1116.
    • (1995) Advances in neural information processing systems 7 , pp. 1109-1116
    • Price, D.1    Knerr, S.2    Personnaz, L.3    Dreyfus, G.4
  • 39
    • 0028910788 scopus 로고
    • Modeling the bacterial no growth interface
    • Ratkowsky DA, Ross T (1995) Modeling the bacterial no growth interface. Lett Appl Microbiol 20: 29-33.
    • (1995) Lett Appl Microbiol , vol.20 , pp. 29-33
    • Ratkowsky, D.A.1    Ross, T.2
  • 40
    • 0000221271 scopus 로고
    • Product units: a computationally powerful and biologically plausible extension to backpropagation networks
    • Richard D, David ER (1989) Product units: a computationally powerful and biologically plausible extension to backpropagation networks. Neural Comput 1(1): 133-142.
    • (1989) Neural Comput , vol.1 , Issue.1 , pp. 133-142
    • Richard, D.1    David, E.R.2
  • 42
    • 51749108047 scopus 로고    scopus 로고
    • Differential evolution research-trends and open questions
    • doi: 10. 1007/978-3-540-68830-3
    • Storn R (2008) Differential evolution research-trends and open questions. In: Advances in differential evolution. Studies in computational intelligence, vol 143, pp 1-31. doi: 10. 1007/978-3-540-68830-3.
    • (2008) Advances in differential evolution. Studies in computational intelligence , vol.143 , pp. 1-31
    • Storn, R.1
  • 43
    • 33947165936 scopus 로고    scopus 로고
    • Product unit neural network models for predicting the growth limits of Listeria monocytogenes
    • Valero A, Hervás C, García-Gimeno RM, Zurera G (2007) Product unit neural network models for predicting the growth limits of Listeria monocytogenes. Food Microbiol 24(5): 452-464.
    • (2007) Food Microbiol , vol.24 , Issue.5 , pp. 452-464
    • Valero, A.1    Hervás, C.2    García-Gimeno, R.M.3    Zurera, G.4
  • 44
    • 33846997849 scopus 로고    scopus 로고
    • Searching for new mathematical growth model approaches for Listeria monocytogenes
    • Valero A, Hervás C, García-Gimeno RM, Zurera G (2007) Searching for new mathematical growth model approaches for Listeria monocytogenes. J Food Sci 72(1): M16-M25.
    • (2007) J Food Sci , vol.72 , Issue.1
    • Valero, A.1    Hervás, C.2    García-Gimeno, R.M.3    Zurera, G.4
  • 47
    • 33645400829 scopus 로고    scopus 로고
    • A neural network approach to predict survival/death and growth/no-growth interfaces for Escherichia coli O157:H7
    • Yu C, Davidson VJ, Yang SX (2006) A neural network approach to predict survival/death and growth/no-growth interfaces for Escherichia coli O157: H7. Food Microbiol 23(6): 552560.
    • (2006) Food Microbiol , vol.23 , Issue.6 , pp. 552560
    • Yu, C.1    Davidson, V.J.2    Yang, S.X.3
  • 48
    • 0028130362 scopus 로고
    • Model for the combined effects of temperature, initial pH, sodium chloride and sodium nitrite concentrations on anaerobic growth of Shigella flexneri
    • Zaika LL, Moulden E, Weimer L, Phillips JG, Buchanan RL (1994) Model for the combined effects of temperature, initial pH, sodium chloride and sodium nitrite concentrations on anaerobic growth of Shigella flexneri. Int J Food Microbiol 23: 345-358.
    • (1994) Int J Food Microbiol , vol.23 , pp. 345-358
    • Zaika, L.L.1    Moulden, E.2    Weimer, L.3    Phillips, J.G.4    Buchanan, R.L.5
  • 49
    • 0034313673 scopus 로고    scopus 로고
    • Neural networks for classification: a survey
    • Zhang GP (2000) Neural networks for classification: a survey. IEEE Trans Syst Man Cybern C Appl Rev 30(4): 451-462.
    • (2000) IEEE Trans Syst Man Cybern C Appl Rev , vol.30 , Issue.4 , pp. 451-462
    • Zhang, G.P.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.