메뉴 건너뛰기




Volumn 2256, Issue , 2001, Pages 1-12

A memetic pareto evolutionary approach to artificial neural networks

Author keywords

Genetic algorithms; Neural networks

Indexed keywords

GENETIC ALGORITHMS; MULTIOBJECTIVE OPTIMIZATION;

EID: 84944892396     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/3-540-45656-2_1     Document Type: Conference Paper
Times cited : (104)

References (32)
  • 1
    • 0034876065 scopus 로고    scopus 로고
    • A pareto differential evolution approach to vector optimisation problems
    • H.A. Abbass, R. Sarker, and C. Newton. A pareto differential evolution approach to vector optimisation problems. Congress on Evolutionary Computation, 2:971–978, 2001.
    • (2001) Congress on Evolutionary Computation , vol.2 , pp. 971-978
    • Abbass, H.A.1    Sarker, R.2    Newton, C.3
  • 2
    • 0003408496 scopus 로고    scopus 로고
    • University of California, Irvine, Dept. of Information and Computer Sciences
    • C.L. Blake and C.J. Merz. UCI repository of machine learning databases, http://www.ics.uci.edu/∼mlearn/mlrepository.html. University of California, Irvine, Dept. of Information and Computer Sciences, 1998.
    • (1998) UCI Repository of Machine Learning Databases
    • Blake, C.L.1    Merz, C.J.2
  • 3
    • 85133775397 scopus 로고    scopus 로고
    • A comprehensive survey of evolutionary-based multiobjective optimization techniques
    • C.A. Coello. A comprehensive survey of evolutionary-based multiobjective optimization techniques. Knowledge and Information Systems, 1(3):269–308, 1999.
    • (1999) Knowledge and Information Systems , vol.1 , Issue.3 , pp. 269-308
    • Coello, C.A.1
  • 6
    • 0029100867 scopus 로고
    • Evolving neural networks for detecting breast cancer
    • D.B. Fogel, E.C. Wasson, and E.M. Boughton. Evolving neural networks for detecting breast cancer. Cancer letters, 96(1):49–53, 1995.
    • (1995) Cancer Letters , vol.96 , Issue.1 , pp. 49-53
    • Fogel, D.B.1    Wasson, E.C.2    Boughton, E.M.3
  • 7
    • 0030724970 scopus 로고    scopus 로고
    • A step toward computer-assisted mammography using evolutionary programming and neural networks
    • D.B. Fogel, E.C. Wasson, and V.W. Porto. A step toward computer-assisted mammography using evolutionary programming and neural networks. Cancer letters, 119(1):93, 1997.
    • (1997) Cancer Letters , vol.119 , Issue.1 , pp. 93
    • Fogel, D.B.1    Wasson, E.C.2    Porto, V.W.3
  • 10
    • 0009391576 scopus 로고
    • Application of genetic algorithms to the training of higher order neural networks
    • D.J. Janson and J.F. Frenzel. Application of genetic algorithms to the training of higher order neural networks. Systems Engineering, 2:272–276, 1992.
    • (1992) Systems Engineering , vol.2 , pp. 272-276
    • Janson, D.J.1    Frenzel, J.F.2
  • 11
    • 0027683141 scopus 로고
    • Training product unit neural networks with genetic algorithms
    • D.J. Janson and J.F. Frenzel. Training product unit neural networks with genetic algorithms. IEEE Expert, 8(5):26–33, 1993.
    • (1993) IEEE Expert , vol.8 , Issue.5 , pp. 26-33
    • Janson, D.J.1    Frenzel, J.F.2
  • 12
    • 0002933170 scopus 로고
    • Designing neural networks using genetic algorithms with graph generation system
    • H. Kitano. Designing neural networks using genetic algorithms with graph generation system. Complex Systems, 4(4):461–476, 1990.
    • (1990) Complex Systems , vol.4 , Issue.4 , pp. 461-476
    • Kitano, H.1
  • 13
    • 0034199912 scopus 로고    scopus 로고
    • Approximating the nondominated front using the pareto archived evolution strategy
    • J. Knowles and D. Corne. Approximating the nondominated front using the pareto archived evolution strategy. Evolutionary Computation, 8(2):149–172, 2000.
    • (2000) Evolutionary Computation , vol.8 , Issue.2 , pp. 149-172
    • Knowles, J.1    Corne, D.2
  • 15
    • 0028336556 scopus 로고
    • Genetic evolution of the topology and weight distribution of neural networks
    • V. Maniezzo. Genetic evolution of the topology and weight distribution of neural networks. IEEE Transactions on Neural Networks, 5(1):39–53, 1994.
    • (1994) IEEE Transactions on Neural Networks , vol.5 , Issue.1 , pp. 39-53
    • Maniezzo, V.1
  • 16
    • 0026486054 scopus 로고
    • Evidence of hyperplanes in the genetic learning of neural networks
    • F. Menczer and D. Parisi. Evidence of hyperplanes in the genetic learning of neural networks. Biological Cybernetics, 66:283–289, 1992.
    • (1992) Biological Cybernetics , vol.66 , pp. 283-289
    • Menczer, F.1    Parisi, D.2
  • 18
    • 0002345223 scopus 로고    scopus 로고
    • Memetic algorithms: A short introduction
    • D. Corne, M. Dorigo, and F. Glover, editors, McGraw-Hill
    • P. Moscato. Memetic algorithms: a short introduction. In D. Corne, M. Dorigo, and F. Glover, editors, New ideas in optimization, pages 219–234. McGraw-Hill, 1999.
    • (1999) New Ideas in Optimization , pp. 219-234
    • Moscato, P.1
  • 19
    • 0029324927 scopus 로고
    • Alternative neural network training methods
    • V.W. Porto, D.B. Fogel, and L.J. Fogel. Alternative neural network training methods. IEEE Expert, 10(3):16–22, 1995.
    • (1995) IEEE Expert , vol.10 , Issue.3 , pp. 16-22
    • Porto, V.W.1    Fogel, D.B.2    Fogel, L.J.3
  • 20
    • 0031651078 scopus 로고    scopus 로고
    • Evolving the topology and the weights of neural networks using a dual representation
    • J.C.F. Pujol and R. Poli. Evolving the topology and the weights of neural networks using a dual representation. Applied Intelligence, 8(1):73–84, 1998.
    • (1998) Applied Intelligence , vol.8 , Issue.1 , pp. 73-84
    • Pujol, J.1    Poli, R.2
  • 27
    • 0027653233 scopus 로고
    • Evolutionary artificial neural networks
    • X. Yao. Evolutionary artificial neural networks. International Journal of Neural Systems, 4(5):203–222, 1993.
    • (1993) International Journal of Neural Systems , vol.4 , Issue.5 , pp. 203-222
    • Yao, X.1
  • 28
    • 0027574256 scopus 로고
    • A review of evolutionary artificial neural networks
    • X. Yao. A review of evolutionary artificial neural networks. International Journal of Intelligent Systems, 8(4):529–567, 1993.
    • (1993) International Journal of Intelligent Systems , vol.8 , Issue.4 , pp. 529-567
    • Yao, X.1
  • 29
    • 0033362601 scopus 로고    scopus 로고
    • Evolving artificial neural networks
    • X. Yao. Evolving artificial neural networks. Proceedings of the IEEE, 87(9):1423–1447, 1999.
    • (1999) Proceedings of the IEEE , vol.87 , Issue.9 , pp. 1423-1447
    • Yao, X.1
  • 30
    • 0032095527 scopus 로고    scopus 로고
    • Making use of population information in evolutionary artificial neural networks
    • X. Yao and Y. Liu. Making use of population information in evolutionary artificial neural networks. IEEE Trans. on Systems, Man, and Cybernetics, Part B: Cybernetics, 28(3):417–425, 1998.
    • (1998) IEEE Trans. On Systems, Man, and Cybernetics, Part B: Cybernetics , vol.28 , Issue.3 , pp. 417-425
    • Yao, X.1    Liu, Y.2
  • 31
    • 0002702865 scopus 로고    scopus 로고
    • Towards designing artificial neural networks by evolution
    • X. Yao and Y. Liu. Towards designing artificial neural networks by evolution. Applied Mathematics and Computation, 91(1):83–90, 1998.
    • (1998) Applied Mathematics and Computation , vol.91 , Issue.1 , pp. 83-90
    • Yao, X.1    Liu, Y.2
  • 32
    • 0033318858 scopus 로고    scopus 로고
    • Multiobjective evolutionary algorithms: A comparative case study and the strength pareto approach
    • E. Zitzler and L. Thiele. Multiobjective evolutionary algorithms: A comparative case study and the strength pareto approach. IEEE Transactions on Evolutionary Computation, 3(4):257–271, 1999.
    • (1999) IEEE Transactions on Evolutionary Computation , vol.3 , Issue.4 , pp. 257-271
    • Zitzler, E.1    Thiele, L.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.