메뉴 건너뛰기




Volumn 71, Issue 2, 2006, Pages

Improving microbial growth prediction by product unit neural networks

Author keywords

Artificial neural networks; Growth model; Leuconostoc mesenteroides; Product units; Spoilage bacteria

Indexed keywords

BACTERIA (MICROORGANISMS); LEUCONOSTOC MESENTEROIDES;

EID: 33645367815     PISSN: 00221147     EISSN: None     Source Type: Journal    
DOI: 10.1111/j.1365-2621.2006.tb08904.x     Document Type: Article
Times cited : (10)

References (33)
  • 1
    • 28444489136 scopus 로고    scopus 로고
    • Validation of mathematical models for predicting growth of Pseudomonas spp. Predictive microbiology applied to chilled food preservation
    • Arinder P, Borch E. 1999. Validation of mathematical models for predicting growth of Pseudomonas spp. Predictive microbiology applied to chilled food preservation. In: Refrigeration Science and Technology Proceedings. p 185-93.
    • (1999) Refrigeration Science and Technology Proceedings , pp. 185-193
    • Arinder, P.1    Borch, E.2
  • 2
    • 0002865616 scopus 로고    scopus 로고
    • Fresh and lightly preserved seafood
    • Man CMD, Jones AA, editors. Md.: Aspen Publishing
    • Dalgaard P. 2000. Fresh and lightly preserved seafood. In: Man CMD, Jones AA, editors. Shelf life evaluation of foods. 2nd ed, Md.: Aspen Publishing. p 110-39.
    • (2000) Shelf Life Evaluation of Foods. 2nd Ed , pp. 110-139
    • Dalgaard, P.1
  • 3
    • 0000221271 scopus 로고
    • Product units: A computationally powerful and biologically plausible extension to backpropagation networks
    • Durbin R, Rumelhart D. 1989. Product units: a computationally powerful and biologically plausible extension to backpropagation networks. Neural Comput 1:133-42.
    • (1989) Neural Comput , vol.1 , pp. 133-142
    • Durbin, R.1    Rumelhart, D.2
  • 5
    • 0037196182 scopus 로고    scopus 로고
    • Improving artificial neural networks with a pruning methodology and genetic algorithms for their application in microbial growth prediction in food
    • García-Gimeno RM, Hervás-Martínez C, de Silóniz MI. 2002. Improving artificial neural networks with a pruning methodology and genetic algorithms for their application in microbial growth prediction in food. Int J Food Microbiol 72:19-30.
    • (2002) Int J Food Microbiol , vol.72 , pp. 19-30
    • García-Gimeno, R.M.1    Hervás-Martínez, C.2    De Silóniz, M.I.3
  • 7
    • 0031733749 scopus 로고    scopus 로고
    • Applications of artificial neural networks as a non-linear modular modeling technique to describe bacterial growth in chilled food products
    • Geeraerd A, Herremans C, Cenens C, Van Impe J. 1998. Applications of artificial neural networks as a non-linear modular modeling technique to describe bacterial growth in chilled food products. Int J Food Microbiol 44:49-68.
    • (1998) Int J Food Microbiol , vol.44 , pp. 49-68
    • Geeraerd, A.1    Herremans, C.2    Cenens, C.3    Van Impe, J.4
  • 8
    • 0023854234 scopus 로고
    • Predicting microbial growth: Growth responses of salmonellae in a laboratory medium affected by pH, sodium chloride and storage temperature
    • Gibson A, Bratchell N, Roberts T. 1988. Predicting microbial growth: growth responses of salmonellae in a laboratory medium affected by pH, sodium chloride and storage temperature. Int J Food Microbiol 6:155-78.
    • (1988) Int J Food Microbiol , vol.6 , pp. 155-178
    • Gibson, A.1    Bratchell, N.2    Roberts, T.3
  • 9
    • 0026745305 scopus 로고
    • Training nets of hardware realizable sigma-pi units
    • Gurney KN. 1992. Training nets of hardware realizable sigma-pi units. Neural Networks 5(2):289-303.
    • (1992) Neural Networks , vol.5 , Issue.2 , pp. 289-303
    • Gurney, K.N.1
  • 10
    • 0031031431 scopus 로고    scopus 로고
    • Computational neural networks for predictive microbiology. II. Application to microbial growth
    • Hajmeer M, Basheer I, Najjar Y. 1997. Computational neural networks for predictive microbiology. II. Application to microbial growth. Int J Food Microbiol 34:51-66.
    • (1997) Int J Food Microbiol , vol.34 , pp. 51-66
    • Hajmeer, M.1    Basheer, I.2    Najjar, Y.3
  • 11
    • 0035648084 scopus 로고    scopus 로고
    • Optimisation of computational neural network for its application to the prediction of microbial growth in foods
    • Hervás C, Zurera G, García-Gimeno RM, Martínez JA. 2001. Optimisation of computational neural network for its application to the prediction of microbial growth in foods. Food Sci Technol Int 7:159-63.
    • (2001) Food Sci Technol Int , vol.7 , pp. 159-163
    • Hervás, C.1    Zurera, G.2    García-Gimeno, R.M.3    Martínez, J.A.4
  • 12
    • 0037944502 scopus 로고    scopus 로고
    • Training product units in feedforward neural networks using particle swarm optimization. Development and practice of artificial intelligence techniques
    • Bajic VB, Sha D, editors. Sept 1999; Durban, South Africa
    • Ismail A, Engelbrecht AP. 1999. Training product units in feedforward neural networks using particle swarm optimization. Development and practice of artificial intelligence techniques. In: Bajic VB, Sha D, editors. Proceedings of the Intl. Conference on Artificial Intelligence; Sept 1999; Durban, South Africa. p 36-40.
    • (1999) Proceedings of the Intl. Conference on Artificial Intelligence , pp. 36-40
    • Ismail, A.1    Engelbrecht, A.P.2
  • 13
    • 0033703440 scopus 로고    scopus 로고
    • Global optimisation algorithms for training product unit neural networks
    • International Joint Conference on Neural Networks; July 24-7, 2000; Como, Italy. Paper 032
    • Ismail AA, Engelbrecht AP. 2000. Global optimisation algorithms for training product unit neural networks. Institute of Electrical and Electronics Engineers (IEEE). International Joint Conference on Neural Networks; July 24-7, 2000; Como, Italy. Paper 032.
    • (2000) Institute of Electrical and Electronics Engineers (IEEE)
    • Ismail, A.A.1    Engelbrecht, A.P.2
  • 15
    • 0035916964 scopus 로고    scopus 로고
    • Microbial growth modeling with artificial neural networks
    • Jeyamkondan S, Jayas D, Holley R. 2001. Microbial growth modeling with artificial neural networks. Int J Food Microbiol 64:343-54.
    • (2001) Int J Food Microbiol , vol.64 , pp. 343-354
    • Jeyamkondan, S.1    Jayas, D.2    Holley, R.3
  • 16
    • 0034307806 scopus 로고    scopus 로고
    • Application of polynominal models to predict growth of mixed cultures of Pseudomonas spp. and Listeria in meat
    • Lebert I, Robles-Olvera V, Lebert A. 2000. Application of polynominal models to predict growth of mixed cultures of Pseudomonas spp. and Listeria in meat. Int J Food Microbiol 61:27-39.
    • (2000) Int J Food Microbiol , vol.61 , pp. 27-39
    • Lebert, I.1    Robles-Olvera, V.2    Lebert, A.3
  • 18
    • 0000873069 scopus 로고
    • A method for solution of certain non-linear problems in least squares
    • Levenberg K. 1944. A method for solution of certain non-linear problems in least squares. Q J Appl Math II 2:164-8.
    • (1944) Q J Appl Math II , vol.2 , pp. 164-168
    • Levenberg, K.1
  • 19
    • 0034869488 scopus 로고    scopus 로고
    • Artificial neural network based predictive model for bacterial growth in a simulated medium of modified-atmosphere-packed cooked meat products
    • Lou W, Nakai S. 2001. Artificial neural network based predictive model for bacterial growth in a simulated medium of modified-atmosphere-packed cooked meat products. J Agric Food Chem 49:1799-804.
    • (2001) J Agric Food Chem , vol.49 , pp. 1799-1804
    • Lou, W.1    Nakai, S.2
  • 20
    • 0000169232 scopus 로고
    • An algorithm for least-squares estimation of non-linear parameters
    • Marquardt DW. 1963. An algorithm for least-squares estimation of non-linear parameters. J Soc Ind Appl Math 11(2):431-41.
    • (1963) J Soc Ind Appl Math , vol.11 , Issue.2 , pp. 431-441
    • Marquardt, D.W.1
  • 21
    • 33645353953 scopus 로고    scopus 로고
    • Modelado de Sistemas mediante modelos híbridos de redes neuronales y computación evolutiva
    • Garijo F, Riquelme JC, Toro M, editors. Iberamia 2002; Nov 12-5, 2002; Seville, Spain
    • Martínez AC, Martínez FJ, García N, Hervás C. 2002. Modelado de Sistemas mediante modelos híbridos de redes neuronales y computación evolutiva. Garijo F, Riquelme JC, Toro M, editors. Workshop Aprendizaje y minería de datos. Iberamia 2002; Nov 12-5, 2002; Seville, Spain. p 67-76.
    • (2002) Workshop Aprendizaje Y Minería de Datos , pp. 67-76
    • Martínez, A.C.1    Martínez, F.J.2    García, N.3    Hervás, C.4
  • 23
    • 0037393903 scopus 로고    scopus 로고
    • A predictive model with repeated measures analysis of Staphylococcus aureus growth data
    • McCann TL, Eifert JD, Gennings C, Schilling MW, Carter WH. 2003. A predictive model with repeated measures analysis of Staphylococcus aureus growth data. Food Microbiol 20:139-47.
    • (2003) Food Microbiol , vol.20 , pp. 139-147
    • McCann, T.L.1    Eifert, J.D.2    Gennings, C.3    Schilling, M.W.4    Carter, W.H.5
  • 24
    • 0037448146 scopus 로고    scopus 로고
    • A retail and consumer phase model for exposure assessment of Bacillus cereus
    • Nauta MJ, Litman S, Barker GC, Carlin F. 2003. A retail and consumer phase model for exposure assessment of Bacillus cereus. Int J Food Microbiol 83:205-18.
    • (2003) Int J Food Microbiol , vol.83 , pp. 205-218
    • Nauta, M.J.1    Litman, S.2    Barker, G.C.3    Carlin, F.4
  • 25
    • 0031445396 scopus 로고    scopus 로고
    • Validation of a model describing the effects of temperature and water activity on the growth of psychrotrophic pseudomonads
    • Neumeyer K, Ross T, Thomson G, McMeekin TA. 1997. Validation of a model describing the effects of temperature and water activity on the growth of psychrotrophic pseudomonads. Int J Food Microbiol 38:55-63.
    • (1997) Int J Food Microbiol , vol.38 , pp. 55-63
    • Neumeyer, K.1    Ross, T.2    Thomson, G.3    McMeekin, T.A.4
  • 26
    • 0031767147 scopus 로고    scopus 로고
    • The effect of the growth environment on the Lag phase of Listeria monocytogenes
    • Robinson TP, Ocio MJ, Kaloti A, Mackey BM. 1998. The effect of the growth environment on the Lag phase of Listeria monocytogenes. Int J Food Microbiol 44:83-92.
    • (1998) Int J Food Microbiol , vol.44 , pp. 83-92
    • Robinson, T.P.1    Ocio, M.J.2    Kaloti, A.3    Mackey, B.M.4
  • 27
    • 0029845515 scopus 로고    scopus 로고
    • Indices for performance evaluation of predictive models in food microbiology
    • Ross T. 1996. Indices for performance evaluation of predictive models in food microbiology. J Appl Bacteriol 81:501-8.
    • (1996) J Appl Bacteriol , vol.81 , pp. 501-508
    • Ross, T.1
  • 28
    • 0034695203 scopus 로고    scopus 로고
    • Predictive modeling of the growth and survival of Listeria in fishery products
    • Ross T, Dalgaard P., Tienungoon S. 2000. Predictive modeling of the growth and survival of Listeria in fishery products. Int J Food Microbiol 62:231-45.
    • (2000) Int J Food Microbiol , vol.62 , pp. 231-245
    • Ross, T.1    Dalgaard, P.2    Tienungoon, S.3
  • 29
    • 0036565303 scopus 로고    scopus 로고
    • Extraction of rules from artificial neural networks for nonlinear regression
    • Setieno R, Leow WK, Zurada JM. 2002. Extraction of rules from artificial neural networks for nonlinear regression. IEEETrans Neural Networks 13:564-77.
    • (2002) IEEETrans Neural Networks , vol.13 , pp. 564-577
    • Setieno, R.1    Leow, W.K.2    Zurada, J.M.3
  • 30
    • 0035931668 scopus 로고    scopus 로고
    • Growth modeling of heat-resistant fungi: The effect of water activity
    • Valík L, Pieckova E. 2001. Growth modeling of heat-resistant fungi: the effect of water activity. Int J Food Microbiol 63:11-7.
    • (2001) Int J Food Microbiol , vol.63 , pp. 11-17
    • Valík, L.1    Pieckova, E.2
  • 32
    • 2942597564 scopus 로고    scopus 로고
    • Response surface vs Davey model for the estimation of Staphylococcus aureus growth under different experimental conditions
    • Zurera-Cosano G, Castillejo-Rodríguez AM, García-Gimeno RM, Rincón-León F. 2004. Response surface vs Davey model for the estimation of Staphylococcus aureus growth under different experimental conditions. J Food Protect 67:1138-45.
    • (2004) J Food Protect , vol.67 , pp. 1138-1145
    • Zurera-Cosano, G.1    Castillejo-Rodríguez, A.M.2    García-Gimeno, R.M.3    Rincón-León, F.4
  • 33
    • 29244451538 scopus 로고    scopus 로고
    • Performance of Response Surface model for prediction of Leuconostoc mesenteroides growth parameters under different experimental conditions
    • Zurera-Cosano G, García-Gimeno RM, Rodríguez-Pérez MR, Hervás Martínez C. 2005. Performance of Response Surface model for prediction of Leuconostoc mesenteroides growth parameters under different experimental conditions. Food Control 17:429-38.
    • (2005) Food Control , vol.17 , pp. 429-438
    • Zurera-Cosano, G.1    García-Gimeno, R.M.2    Rodríguez-Pérez, M.R.3    Hervás Martínez, C.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.