-
1
-
-
42449123761
-
Expansion and evolution of cell death programmes
-
Degterev A, Yuan J (2008) Expansion and evolution of cell death programmes. Nat Rev Mol Cell Biol 9:378-390
-
(2008)
Nat Rev Mol Cell Biol
, vol.9
, pp. 378-390
-
-
Degterev, A.1
Yuan, J.2
-
2
-
-
22244464818
-
Proapoptotic Bak is sequestered by Mcl-1 and Bcl-xL, but not Bcl-2, until displaced by BH3-only proteins
-
Willis SN, Chen L, Dewson G et al (2005) Proapoptotic Bak is sequestered by Mcl-1 and Bcl-xL, but not Bcl-2, until displaced by BH3-only proteins. Genes Dev 19:1294-1305
-
(2005)
Genes Dev
, vol.19
, pp. 1294-1305
-
-
Willis, S.N.1
Chen, L.2
Dewson, G.3
-
3
-
-
70449091753
-
Stepwise activation of BAX and BAK by tBID, BIM, and PUMA initiates mitochondrial apoptosis
-
Kim H, Tu HC, Ren D et al (2009) Stepwise activation of BAX and BAK by tBID, BIM, and PUMA initiates mitochondrial apoptosis. Mol Cell 36:487-499
-
(2009)
Mol Cell
, vol.36
, pp. 487-499
-
-
Kim, H.1
Tu, H.C.2
Ren, D.3
-
4
-
-
37549048249
-
The BCL-2 protein family: Opposing activities that mediate cell death
-
Youle RJ, Strasser A (2008) The BCL-2 protein family: opposing activities that mediate cell death. Nat Rev Mol Cell Biol 9:47-59
-
(2008)
Nat Rev Mol Cell Biol
, vol.9
, pp. 47-59
-
-
Youle, R.J.1
Strasser, A.2
-
5
-
-
0032555697
-
Cleavage of BID by caspase 8 mediates the mitochondrial damage in the Fas pathway of apoptosis
-
Li H, Zhu H, Xu CJ, Yuan J (1998) Cleavage of BID by caspase 8 mediates the mitochondrial damage in the Fas pathway of apoptosis. Cell 94:491-501
-
(1998)
Cell
, vol.94
, pp. 491-501
-
-
Li, H.1
Zhu, H.2
Xu, C.J.3
Yuan, J.4
-
6
-
-
38049119903
-
Overlapping cleavage motif selectivity of caspases: Implications for analysis of apoptotic pathways
-
McStay GP, Salvesen GS, Green DR (2008) Overlapping cleavage motif selectivity of caspases: implications for analysis of apoptotic pathways. Cell Death Differ 15:322-331
-
(2008)
Cell Death Differ
, vol.15
, pp. 322-331
-
-
McStay, G.P.1
Salvesen, G.S.2
Green, D.R.3
-
7
-
-
47749089820
-
Regulation of TNFR1 and CD95 signalling by receptor compartmentalization
-
Schütze S, Tchikov V, Schneider-Brachert W (2008) Regulation of TNFR1 and CD95 signalling by receptor compartmentalization. Nat Rev Mol Cell Biol 9:655-662
-
(2008)
Nat Rev Mol Cell Biol
, vol.9
, pp. 655-662
-
-
Schütze, S.1
Tchikov, V.2
Schneider-Brachert, W.3
-
8
-
-
10844242970
-
Hyperthermia enhances CD95-ligand gene expression in T lymphocytes
-
Cippitelli M, Fionda C, Di Bona D, Piccoli M, Frati L, Santoni A (2005) Hyperthermia enhances CD95-ligand gene expression in T lymphocytes. J Immunol 174:223-232
-
(2005)
J Immunol
, vol.174
, pp. 223-232
-
-
Cippitelli, M.1
Fionda, C.2
Di Bona, D.3
Piccoli, M.4
Frati, L.5
Santoni, A.6
-
9
-
-
29144463145
-
The multidomain proapoptotic molecules Bax and Bak are directly activated by heat
-
Pagliari LJ, Kuwana T, Bonzon C et al (2005) The multidomain proapoptotic molecules Bax and Bak are directly activated by heat. Proc Natl Acad Sci USA 102:17975-17980
-
(2005)
Proc Natl Acad Sci USA
, vol.102
, pp. 17975-17980
-
-
Pagliari, L.J.1
Kuwana, T.2
Bonzon, C.3
-
10
-
-
30344459150
-
In situ trapping of activated initiator caspases reveals a role for caspase-2 in heat shock-induced apoptosis
-
Tu S, McStay GP, Boucher LM, Mak T, Beere HM, Green DR (2006) In situ trapping of activated initiator caspases reveals a role for caspase-2 in heat shock-induced apoptosis. Nat Cell Biol 8:72-77
-
(2006)
Nat Cell Biol
, vol.8
, pp. 72-77
-
-
Tu, S.1
McStay, G.P.2
Boucher, L.M.3
Mak, T.4
Beere, H.M.5
Green, D.R.6
-
11
-
-
0036024020
-
Caspase-2 is not required for thymocyte or neuronal apoptosis even though cleavage of caspase-2 is dependent on both Apaf-1 and caspase-9
-
O'Reilly LA, Ekert P, Harvey N et al
-
O'Reilly LA, Ekert P, Harvey N et al (2002) Caspase-2 is not required for thymocyte or neuronal apoptosis even though cleavage of caspase-2 is dependent on both Apaf-1 and caspase-9. Cell Death Differ 9:832-841
-
(2002)
Cell Death Differ
, vol.9
, pp. 832-841
-
-
-
12
-
-
33846053961
-
Loss of caspase-9 reveals its essential role for caspase-2 activation and mitochondrial membrane depolarization
-
Samraj AK, Sohn D, Schulze-Osthoff K, Schmitz I (2007) Loss of caspase-9 reveals its essential role for caspase-2 activation and mitochondrial membrane depolarization. Mol Biol Cell 18:84-93
-
(2007)
Mol Biol Cell
, vol.18
, pp. 84-93
-
-
Samraj, A.K.1
Sohn, D.2
Schulze-Osthoff, K.3
Schmitz, I.4
-
13
-
-
66149103719
-
DISC-mediated activation of caspase-2 in DNA damage-induced apoptosis
-
Olsson M, Vakifahmetoglu H, Abruzzo PM, Hogstrand K, Grandien A, Zhivotovsky B (2009) DISC-mediated activation of caspase-2 in DNA damage-induced apoptosis. Oncogene 28:1949-1959
-
(2009)
Oncogene
, vol.28
, pp. 1949-1959
-
-
Olsson, M.1
Vakifahmetoglu, H.2
Abruzzo, P.M.3
Hogstrand, K.4
Grandien, A.5
Zhivotovsky, B.6
-
14
-
-
33745739717
-
Caspase-2-induced apoptosis requires bid cleavage: A physiological role for bid in heat shock-induced death
-
Bonzon C, Bouchier-Hayes L, Pagliari LJ, Green DR, Newmeyer DD (2006) Caspase-2-induced apoptosis requires bid cleavage: a physiological role for bid in heat shock-induced death. Mol Biol Cell 17:2150-2157
-
(2006)
Mol Biol Cell
, vol.17
, pp. 2150-2157
-
-
Bonzon, C.1
Bouchier-Hayes, L.2
Pagliari, L.J.3
Green, D.R.4
Newmeyer, D.D.5
-
15
-
-
0034647691
-
Pivotal role of reactive oxygen species as intracellular mediators of hyperthermia-induced apoptosis
-
Katschinski DM, Boos K, Schindler SG, Fandrey J (2000) Pivotal role of reactive oxygen species as intracellular mediators of hyperthermia-induced apoptosis. J Biol Chem 275:21094-21098
-
(2000)
J Biol Chem
, vol.275
, pp. 21094-21098
-
-
Katschinski, D.M.1
Boos, K.2
Schindler, S.G.3
Fandrey, J.4
-
16
-
-
33644895407
-
Mechanism of cell death induction by nitroxide and hyperthermia
-
Zhao Q-L, Fujiwara Y, Kondo T (2006) Mechanism of cell death induction by nitroxide and hyperthermia. Free Radic Biol Med 40:1131-1143
-
(2006)
Free Radic Biol Med
, vol.40
, pp. 1131-1143
-
-
Zhao, Q.-L.1
Fujiwara, Y.2
Kondo, T.3
-
17
-
-
55549091082
-
The mitochondrial phosphate carrier interacts with cyclophilin D and may play a key role in the permeability transition
-
Leung AW, Varanyuwatana P, Halestrap AP (2008) The mitochondrial phosphate carrier interacts with cyclophilin D and may play a key role in the permeability transition. J Biol Chem 283:26312-26323
-
(2008)
J Biol Chem
, vol.283
, pp. 26312-26323
-
-
Leung, A.W.1
Varanyuwatana, P.2
Halestrap, A.P.3
-
18
-
-
15844375853
-
Loss of cyclophilin D reveals a critical role for mitochondrial permeability transition in cell death
-
Baines CP, Kaiser RA, Purcell NH et al (2005) Loss of cyclophilin D reveals a critical role for mitochondrial permeability transition in cell death. Nature 434:658-662
-
(2005)
Nature
, vol.434
, pp. 658-662
-
-
Baines, C.P.1
Kaiser, R.A.2
Purcell, N.H.3
-
19
-
-
15844407874
-
Cyclophilin D-dependent mitochondrial permeability transition regulates some necrotic but not apoptotic cell death
-
Nakagawa T, Shimizu S, Watanabe T et al (2005) Cyclophilin D-dependent mitochondrial permeability transition regulates some necrotic but not apoptotic cell death. Nature 434:652-658
-
(2005)
Nature
, vol.434
, pp. 652-658
-
-
Nakagawa, T.1
Shimizu, S.2
Watanabe, T.3
-
20
-
-
0034042319
-
The pro-oxidative activity of SOD and nitroxide SOD mimics
-
Offer T, Russo A, Samuni A (2000) The pro-oxidative activity of SOD and nitroxide SOD mimics. FASEB J 14:1215-1223
-
(2000)
FASEB J
, vol.14
, pp. 1215-1223
-
-
Offer, T.1
Russo, A.2
Samuni, A.3
-
21
-
-
34247248969
-
The chemistry and biology of nitroxide compounds
-
Soule BP, Hyodo F, Matsumoto K et al (2007) The chemistry and biology of nitroxide compounds. Free Radic Biol Med 42:1632-1650
-
(2007)
Free Radic Biol Med
, vol.42
, pp. 1632-1650
-
-
Soule, B.P.1
Hyodo, F.2
Matsumoto, K.3
-
22
-
-
0034952937
-
Nitroxide TEMPOL impairs mitochondrial function and induces apoptosis in HL60 cells
-
Monti E, Supino R, Colleoni M, Costa B, Ravizza R, Gariboldi MB (2001) Nitroxide TEMPOL impairs mitochondrial function and induces apoptosis in HL60 cells. J Cell Biochem 82:271-276
-
(2001)
J Cell Biochem
, vol.82
, pp. 271-276
-
-
Monti, E.1
Supino, R.2
Colleoni, M.3
Costa, B.4
Ravizza, R.5
Gariboldi, M.B.6
-
23
-
-
0026731503
-
Increased hydrogen peroxide concentration in human tumor cells due to a nitroxide free radical
-
Voest EE, van Faassen E, van Asbeck BS, Neijt JP, Marx JJ (1992) Increased hydrogen peroxide concentration in human tumor cells due to a nitroxide free radical.Biochim Biophys Acta 1136:113-118
-
(1992)
Biochim Biophys Acta
, vol.1136
, pp. 113-118
-
-
Voest, E.E.1
Van Faassen, E.2
Van Asbeck, B.S.3
Neijt, J.P.4
Marx, J.J.5
-
24
-
-
14744268278
-
Nitroxide tempo, a small molecule, induces apoptosis in prostate carcinoma cells and suppresses tumor growth in athymic mice
-
Suy S, Mitchell JB, Samuni A, Mueller S, Kasid U (2005) Nitroxide tempo, a small molecule, induces apoptosis in prostate carcinoma cells and suppresses tumor growth in athymic mice. Cancer 103:1302-1313
-
(2005)
Cancer
, vol.103
, pp. 1302-1313
-
-
Suy, S.1
Mitchell, J.B.2
Samuni, A.3
Mueller, S.4
Kasid, U.5
-
25
-
-
2942581328
-
Disruption of mitochondrial function during apoptosis is mediated by caspase cleavage of the p75 subunit of complex i of the electron transport chain
-
Ricci JE, Munoz-Pinedo C, Fitzgerald P et al (2004) Disruption of mitochondrial function during apoptosis is mediated by caspase cleavage of the p75 subunit of complex I of the electron transport chain. Cell 117:773-786
-
(2004)
Cell
, vol.117
, pp. 773-786
-
-
Ricci, J.E.1
Munoz-Pinedo, C.2
Fitzgerald, P.3
-
26
-
-
0034329418
-
LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing
-
Kabeya Y, Mizushima N, Ueno T et al (2000) LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J 19:5720-5728
-
(2000)
EMBO J
, vol.19
, pp. 5720-5728
-
-
Kabeya, Y.1
Mizushima, N.2
Ueno, T.3
-
27
-
-
0033021780
-
Transient and longlasting openings of the mitochondrial permeability transition pore can be monitored directly in intact cells by changes in mitochondrial calcein fluorescence
-
Petronilli V, Miotto G, Canton M et al (1999) Transient and longlasting openings of the mitochondrial permeability transition pore can be monitored directly in intact cells by changes in mitochondrial calcein fluorescence. Biophys J 76:725-734
-
(1999)
Biophys J
, vol.76
, pp. 725-734
-
-
Petronilli, V.1
Miotto, G.2
Canton, M.3
-
28
-
-
0030931876
-
Caspases: The executioners of apoptosis
-
Cohen GM (1997) Caspases: the executioners of apoptosis. Biochem J 326(Pt 1):1-16
-
(1997)
Biochem J
, vol.326
, Issue.PART. 1
, pp. 1-16
-
-
Cohen, G.M.1
-
29
-
-
2342592537
-
Fas-disabling small exocyclic peptide mimetics limit apoptosis by an unexpected mechanism
-
Hasegawa A, Cheng X, Kajino K et al (2004) Fas-disabling small exocyclic peptide mimetics limit apoptosis by an unexpected mechanism. Proc Natl Acad Sci USA 101:6599-6604
-
(2004)
Proc Natl Acad Sci USA
, vol.101
, pp. 6599-6604
-
-
Hasegawa, A.1
Cheng, X.2
Kajino, K.3
-
30
-
-
14244269224
-
Oligomeric states of the voltage-dependent anion channel and cytochrome c release from mitochondria
-
Zalk R, Israelson A, Garty ES, Azoulay-Zohar H, Shoshan-Barmatz V (2005) Oligomeric states of the voltage-dependent anion channel and cytochrome c release from mitochondria. Biochem J 386:73-83
-
(2005)
Biochem J
, vol.386
, pp. 73-83
-
-
Zalk, R.1
Israelson, A.2
Garty, E.S.3
Azoulay-Zohar, H.4
Shoshan-Barmatz, V.5
-
31
-
-
1642540210
-
The mitochondrial calcium uniporter is a highly selective ion channel
-
Kirichok Y, Krapivinsky G, Clapham DE (2004) The mitochondrial calcium uniporter is a highly selective ion channel. Nature 427:360-364
-
(2004)
Nature
, vol.427
, pp. 360-364
-
-
Kirichok, Y.1
Krapivinsky, G.2
Clapham, D.E.3
-
32
-
-
65649097647
-
Cyclophilin D interacts with Bcl2 and exerts an antiapoptotic effect
-
Eliseev RA, Malecki J, Lester T, Zhang Y, Humphrey J, Gunter TE (2009) Cyclophilin D interacts with Bcl2 and exerts an antiapoptotic effect. J Biol Chem 284:9692-9699
-
(2009)
J Biol Chem
, vol.284
, pp. 9692-9699
-
-
Eliseev, R.A.1
Malecki, J.2
Lester, T.3
Zhang, Y.4
Humphrey, J.5
Gunter, T.E.6
-
33
-
-
66349121718
-
Hypoxiainduced autophagy is mediated through hypoxia-inducible factor induction of BNIP3 and BNIP3L via their BH3 domains
-
Bellot G, Garcia-Medina R, Gounon P et al (2009) Hypoxiainduced autophagy is mediated through hypoxia-inducible factor induction of BNIP3 and BNIP3L via their BH3 domains. Mol Cell Biol 29:2570-2581
-
(2009)
Mol Cell Biol
, vol.29
, pp. 2570-2581
-
-
Bellot, G.1
Garcia-Medina, R.2
Gounon, P.3
-
34
-
-
0033942613
-
BNIP3 and genetic control of necrosis-like cell death through the mitochondrial permeability transition pore
-
Vande Velde C, Cizeau J, Dubik D et al (2000) BNIP3 and genetic control of necrosis-like cell death through the mitochondrial permeability transition pore. Mol Cell Biol 20:5454-5468
-
(2000)
Mol Cell Biol
, vol.20
, pp. 5454-5468
-
-
Vande Velde, C.1
Cizeau, J.2
Dubik, D.3
-
35
-
-
34248998801
-
Functional and physical interaction between Bcl-X(L) and a BH3-like domain in Beclin-1
-
Maiuri MC, Le Toumelin G, Criollo A et al (2007) Functional and physical interaction between Bcl-X(L) and a BH3-like domain in Beclin-1. EMBO J 26:2527-2539
-
(2007)
EMBO J
, vol.26
, pp. 2527-2539
-
-
Maiuri, M.C.1
Le Toumelin, G.2
Criollo, A.3
-
36
-
-
12944303650
-
Growth factor regulation of autophagy and cell survival in the absence of apoptosis
-
Lum JJ, Bauer DE, Kong M et al (2005) Growth factor regulation of autophagy and cell survival in the absence of apoptosis. Cell 120:237-248
-
(2005)
Cell
, vol.120
, pp. 237-248
-
-
Lum, J.J.1
Bauer, D.E.2
Kong, M.3
-
37
-
-
33644840693
-
Chemical inhibitor of nonapoptotic cell death with therapeutic potential for ischemic brain injury
-
Degterev A, Huang Z, Boyce M et al (2005) Chemical inhibitor of nonapoptotic cell death with therapeutic potential for ischemic brain injury. Nat Chem Biol 1:112-119
-
(2005)
Nat Chem Biol
, vol.1
, pp. 112-119
-
-
Degterev, A.1
Huang, Z.2
Boyce, M.3
-
38
-
-
27944482199
-
Impairing the bioenergetic status and the biogenesis of mitochondria triggers mitophagy in yeast
-
Priault M, Salin B, Schaeffer J, Vallette FM, di Rago JP, Martinou JC (2005) Impairing the bioenergetic status and the biogenesis of mitochondria triggers mitophagy in yeast. Cell Death Differ 12:1613-1621
-
(2005)
Cell Death Differ
, vol.12
, pp. 1613-1621
-
-
Priault, M.1
Salin, B.2
Schaeffer, J.3
Vallette, F.M.4
Di Rago, J.P.5
Martinou, J.C.6
-
39
-
-
34249279169
-
GAPDH and autophagy preserve survival after apoptotic cytochrome c release in the absence of caspase activation
-
Colell A, Ricci JE, Tait S et al (2007) GAPDH and autophagy preserve survival after apoptotic cytochrome c release in the absence of caspase activation. Cell 129:983-997
-
(2007)
Cell
, vol.129
, pp. 983-997
-
-
Colell, A.1
Ricci, J.E.2
Tait, S.3
-
40
-
-
33846189759
-
Control of macroautophagy by calcium, calmodulin-dependent kinase kinase-beta, and Bcl-2
-
Høyer-Hansen M, Bastholm L, Szyniarowski P et al (2007) Control of macroautophagy by calcium, calmodulin-dependent kinase kinase-beta, and Bcl-2. Mol Cell 25:193-205
-
(2007)
Mol Cell
, vol.25
, pp. 193-205
-
-
Høyer-Hansen, M.1
Bastholm, L.2
Szyniarowski, P.3
-
41
-
-
0035877605
-
Caspase-2-induced apoptosis is dependent on caspase-9, but its processing during UV- or tumor necrosis factor-dependent cell death requires caspase-3
-
Paroni G, Henderson C, Schneider C, Brancolini C (2001) Caspase-2-induced apoptosis is dependent on caspase-9, but its processing during UV- or tumor necrosis factor-dependent cell death requires caspase-3. J Biol Chem 276:21907-21915
-
(2001)
J Biol Chem
, vol.276
, pp. 21907-21915
-
-
Paroni, G.1
Henderson, C.2
Schneider, C.3
Brancolini, C.4
-
42
-
-
49349112331
-
Opa1-mediated cristae opening is Bax/Bak and BH3 dependent, required for apoptosis, and independent of Bak oligomerization
-
Yamaguchi R, Lartigue L, Perkins G et al (2008) Opa1-mediated cristae opening is Bax/Bak and BH3 dependent, required for apoptosis, and independent of Bak oligomerization. Mol Cell 31:557-569
-
(2008)
Mol Cell
, vol.31
, pp. 557-569
-
-
Yamaguchi, R.1
Lartigue, L.2
Perkins, G.3
|