메뉴 건너뛰기




Volumn 55, Issue 34, 2010, Pages 3853-3863

Application of artificial neural networks in global climate change and ecological research: An overview

Author keywords

Artificial neural network; Ecology; Global change; Nonlinear problem

Indexed keywords


EID: 78650038193     PISSN: 10016538     EISSN: 18619541     Source Type: Journal    
DOI: 10.1007/s11434-010-4183-3     Document Type: Review
Times cited : (67)

References (79)
  • 1
    • 33847259280 scopus 로고    scopus 로고
    • Meta-analysis and its application in global change research
    • Lei X D, Peng C H, Tian D L, et al. Meta-analysis and its application in global change research. Chinese Sci Bull, 2007, 52: 289-302.
    • (2007) Chinese Sci Bull , vol.52 , pp. 289-302
    • Lei, X.D.1    Peng, C.H.2    Tian, D.L.3
  • 2
    • 0020118274 scopus 로고
    • Neural networks and physical systems with emergent collective computational abilities
    • Hopfield J. Neural networks and physical systems with emergent collective computational abilities. Proc Natl Acad Sci USA, 1982, 79: 2554-2558.
    • (1982) Proc Natl Acad Sci USA , vol.79 , pp. 2554-2558
    • Hopfield, J.1
  • 5
    • 0029415649 scopus 로고
    • A review and analysis of backpropagation neural networks for classification of remotely-sensed multi-spectral imagery
    • Paola J D, Schowengerdt R A. A review and analysis of backpropagation neural networks for classification of remotely-sensed multi-spectral imagery. Int J Remote Sens, 1995, 16: 3033-3058.
    • (1995) Int J Remote Sens , vol.16 , pp. 3033-3058
    • Paola, J.D.1    Schowengerdt, R.A.2
  • 6
    • 0346245214 scopus 로고    scopus 로고
    • The use of backpropagating artificial neural networks in land cover classification
    • Kavzoglu T, Mather P M. The use of backpropagating artificial neural networks in land cover classification. Int J Remote Sens, 2003, 24: 4907-4938.
    • (2003) Int J Remote Sens , vol.24 , pp. 4907-4938
    • Kavzoglu, T.1    Mather, P.M.2
  • 7
    • 37549009133 scopus 로고    scopus 로고
    • The application of artificial neural networks to the analysis of remotely sensed data
    • Mas J F, Flores J J. The application of artificial neural networks to the analysis of remotely sensed data. Int J Remote Sens, 2008, 29: 617-663.
    • (2008) Int J Remote Sens , vol.29 , pp. 617-663
    • Mas, J.F.1    Flores, J.J.2
  • 8
    • 62349132975 scopus 로고    scopus 로고
    • Increasing the accuracy of neural network classification using refined training data
    • Kavzoglu T. Increasing the accuracy of neural network classification using refined training data. Environ Modell Softw, 2009, 24: 850-858.
    • (2009) Environ Modell Softw , vol.24 , pp. 850-858
    • Kavzoglu, T.1
  • 10
    • 67650921436 scopus 로고    scopus 로고
    • Artificial neural network and its application in agricultural and ecological research (in Chinese)
    • Mi X C, Ma K P, Zou Y B. Artificial neural network and its application in agricultural and ecological research (in Chinese). J Plant Ecol, 2005, 29: 863-870.
    • (2005) J Plant Ecol , vol.29 , pp. 863-870
    • Mi, X.C.1    Ma, K.P.2    Zou, Y.B.3
  • 11
    • 78649543820 scopus 로고    scopus 로고
    • Current status and future direction of the study on artificial neural network classification processing in remote sensing (in Chinese)
    • Xiu L N, Liu X N. Current status and future direction of the study on artificial neural network classification processing in remote sensing (in Chinese). Remote Sens Technol Appl, 2003, 18: 339-345.
    • (2003) Remote Sens Technol Appl , vol.18 , pp. 339-345
    • Xiu, L.N.1    Liu, X.N.2
  • 12
    • 78650074036 scopus 로고    scopus 로고
    • The hardware and software of ANN (in Chinese)
    • Yu B L, Liu Z Q, Liu H. The hardware and software of ANN (in Chinese). J Zhengzhou Polytech Inst, 2004, 20: 7-8.
    • (2004) J Zhengzhou Polytech Inst , vol.20 , pp. 7-8
    • Yu, B.L.1    Liu, Z.Q.2    Liu, H.3
  • 13
    • 67650338937 scopus 로고    scopus 로고
    • Prediction of climate change impacts on streamflow of lake bosten using artificial neural network model (in Chinese)
    • Chen X, Wu J L, Wang L. Prediction of climate change impacts on streamflow of lake bosten using artificial neural network model (in Chinese). J Lake Sci, 2005, 17: 207-212.
    • (2005) J Lake Sci , vol.17 , pp. 207-212
    • Chen, X.1    Wu, J.L.2    Wang, L.3
  • 14
    • 54149090894 scopus 로고    scopus 로고
    • The errors analysis for river water quality prediction based on BP modeling (in Chinese)
    • Zou Z H, Wang X L. The errors analysis for river water quality prediction based on BP modeling (in Chinese). Acta Sci Circums, 2007, 27: 1038-1042.
    • (2007) Acta Sci Circums , vol.27 , pp. 1038-1042
    • Zou, Z.H.1    Wang, X.L.2
  • 15
    • 33646162414 scopus 로고    scopus 로고
    • An application of artificial neural networks to carbon, nitrogen and phosphorus concentrations in three boreal streams and impacts of climate change
    • Holmberg M, Forsius M, Starr M, et al. An application of artificial neural networks to carbon, nitrogen and phosphorus concentrations in three boreal streams and impacts of climate change. Ecol Model, 2006, 195: 51-60.
    • (2006) Ecol Model , vol.195 , pp. 51-60
    • Holmberg, M.1    Forsius, M.2    Starr, M.3
  • 16
    • 28444499275 scopus 로고    scopus 로고
    • The application of artificial neural networks to flow and phosphorus dynamics in small streams on the Boreal Plain, with emphasis on the role of wetlands
    • Nour M H, Smith D W, Prepas E E, et al. The application of artificial neural networks to flow and phosphorus dynamics in small streams on the Boreal Plain, with emphasis on the role of wetlands. Ecol Model, 2006, 191: 19-32.
    • (2006) Ecol Model , vol.191 , pp. 19-32
    • Nour, M.H.1    Smith, D.W.2    Prepas, E.E.3
  • 17
    • 40049099428 scopus 로고    scopus 로고
    • Simulation of spring flows from a karst aquifer with an artificial neural network
    • Hu C H, Hao Y H, Pang B, et al. Simulation of spring flows from a karst aquifer with an artificial neural network. Hydrol Process, 2008, 22: 596-604.
    • (2008) Hydrol Process , vol.22 , pp. 596-604
    • Hu, C.H.1    Hao, Y.H.2    Pang, B.3
  • 18
    • 31044455061 scopus 로고    scopus 로고
    • Integration of artificial neural networks with conceptual models in rainfall-runoff modeling
    • Chen J Y, Adams B J. Integration of artificial neural networks with conceptual models in rainfall-runoff modeling. J Hydrol, 2006, 318: 232-249.
    • (2006) J Hydrol , vol.318 , pp. 232-249
    • Chen, J.Y.1    Adams, B.J.2
  • 19
    • 54049108802 scopus 로고    scopus 로고
    • On the relevance of using artificial neural networks for estimating soil moisture content
    • Elshorbagy A, Parasuraman K. On the relevance of using artificial neural networks for estimating soil moisture content. J Hydrol, 2008, 362: 1-18.
    • (2008) J Hydrol , vol.362 , pp. 1-18
    • Elshorbagy, A.1    Parasuraman, K.2
  • 20
    • 78650057868 scopus 로고    scopus 로고
    • Ecological Informatics: Overview
    • S. E. Jorgensen and B. Fath (Eds.), Oxford: Elsevier
    • Recknagel F. Ecological Informatics: Overview. In: Jorgensen S E, Fath B, eds. Encyclopedia of Ecology. Oxford: Elsevier, 2008. 1041-1058.
    • (2008) Encyclopedia of Ecology , pp. 1041-1058
    • Recknagel, F.1
  • 21
    • 60549091177 scopus 로고    scopus 로고
    • Evolutionary artificial neural networks for hydrological systems forecasting
    • Chen Y H, Chang F J. Evolutionary artificial neural networks for hydrological systems forecasting. J Hydrol, 2009, 367: 125-137.
    • (2009) J Hydrol , vol.367 , pp. 125-137
    • Chen, Y.H.1    Chang, F.J.2
  • 22
    • 0035282702 scopus 로고    scopus 로고
    • 4 in the runoff of a forested catchment using artificial neural networks
    • 4 in the runoff of a forested catchment using artificial neural networks. J Hydrol, 2001, 243: 31-42.
    • (2001) J Hydrol , vol.243 , pp. 31-42
    • Lischeid, G.1
  • 23
    • 60649118396 scopus 로고    scopus 로고
    • Artificial neural network modeling of the river water quality: A case study
    • Kunwar P S, Ankita B, Amrita M, et al. Artificial neural network modeling of the river water quality: A case study. Ecol Model, 2009, 220: 888-895.
    • (2009) Ecol Model , vol.220 , pp. 888-895
    • Kunwar, P.S.1    Ankita, B.2    Amrita, M.3
  • 24
    • 0037442528 scopus 로고    scopus 로고
    • Applications of artificial neural networks for patterning and predicting aquatic insect species richness in running waters
    • Park Y S, Régis Céréghino, Arthur C, et al. Applications of artificial neural networks for patterning and predicting aquatic insect species richness in running waters. Ecol Model, 2003, 160: 265-280.
    • (2003) Ecol Model , vol.160 , pp. 265-280
    • Park, Y.S.1    Régis, C.2    Arthur, C.3
  • 25
    • 25844516419 scopus 로고    scopus 로고
    • A comprehensive quantitative assessment model for arid area's basin water soil environment quality (in Chinese)
    • Song S B, Cai H J. A comprehensive quantitative assessment model for arid area's basin water soil environment quality (in Chinese). Chin J Appl Ecol, 2005, 16: 345-349.
    • (2005) Chin J Appl Ecol , vol.16 , pp. 345-349
    • Song, S.B.1    Cai, H.J.2
  • 26
    • 0036468601 scopus 로고    scopus 로고
    • Atmospheric urban pollution: Applications of an artificial neural network (ANN) to the city of Perugia
    • Viotti P, Liuti G, Genov P D. Atmospheric urban pollution: Applications of an artificial neural network (ANN) to the city of Perugia. Ecol Model, 2002, 148: 27-46.
    • (2002) Ecol Model , vol.148 , pp. 27-46
    • Viotti, P.1    Liuti, G.2    Genov, P.D.3
  • 27
    • 27844608945 scopus 로고    scopus 로고
    • Artificial neural network approach for modelling nitrogen dioxide dispersion from vehicular exhaust emissions
    • Nagendra S M S, Khare M. Artificial neural network approach for modelling nitrogen dioxide dispersion from vehicular exhaust emissions. Ecol Model, 2006, 190: 99-115.
    • (2006) Ecol Model , vol.190 , pp. 99-115
    • Nagendra, S.M.S.1    Khare, M.2
  • 28
    • 78049447938 scopus 로고    scopus 로고
    • Study on wavelet analysis and neural network prediction of SO2 concentration in air (in Chinese)
    • Chen L, Ma G D. Study on wavelet analysis and neural network prediction of SO2 concentration in air (in Chinese). Acta Sci Circum, 2006, 6: 1553-1558.
    • (2006) Acta Sci Circum , vol.6 , pp. 1553-1558
    • Chen, L.1    Ma, G.D.2
  • 30
    • 2642555647 scopus 로고    scopus 로고
    • The use of artificial neural networks (ANNs) to simulate N2O emissions from a temperate grassland ecosystem
    • Matthew R, Christoph M, Hong J D, et al. The use of artificial neural networks (ANNs) to simulate N2O emissions from a temperate grassland ecosystem. Ecol Model, 2004, 175: 189-194.
    • (2004) Ecol Model , vol.175 , pp. 189-194
    • Matthew, R.1    Christoph, M.2    Hong, J.D.3
  • 31
    • 11444255160 scopus 로고    scopus 로고
    • Unbiased sensitivity analysis and pruning techniques in neural networks for surface ozone modeling
    • Barcenas O P, Olivas E S, Guerrero J D M, et al. Unbiased sensitivity analysis and pruning techniques in neural networks for surface ozone modeling. Ecol Model, 2005, 182: 149-158.
    • (2005) Ecol Model , vol.182 , pp. 149-158
    • Barcenas, O.P.1    Olivas, E.S.2    Guerrero, J.D.M.3
  • 32
    • 76649124883 scopus 로고    scopus 로고
    • 2 flux of three different ecosystem in ChinaFLUX based on artificial neural network
    • 2 flux of three different ecosystem in ChinaFLUX based on artificial neural network. Sci China Ser D-Earth Sci, 2006, 49(Supp II): 252-261.
    • (2006) Sci China Ser D-Earth Sci , vol.49 , Issue.SuppII , pp. 252-261
    • He, H.L.1    Yu, G.R.2    Zhang, L.M.3
  • 33
    • 27744501238 scopus 로고    scopus 로고
    • Artificial neural network application for multi-ecosystem carbon flux simulation
    • Melesse A M, Hanley R S. Artificial neural network application for multi-ecosystem carbon flux simulation. Ecol Model, 2005, 189: 305-314.
    • (2005) Ecol Model , vol.189 , pp. 305-314
    • Melesse, A.M.1    Hanley, R.S.2
  • 34
    • 0037884965 scopus 로고    scopus 로고
    • A new assessment of European forests carbon exchanges by eddy fluxes and artificial neural network spatialization
    • Papale D, Valentini R. A new assessment of European forests carbon exchanges by eddy fluxes and artificial neural network spatialization. Glob Change Biol, 2003, 9: 525-535.
    • (2003) Glob Change Biol , vol.9 , pp. 525-535
    • Papale, D.1    Valentini, R.2
  • 35
    • 77958066949 scopus 로고    scopus 로고
    • Remote sensing method of forest biomass estimation by artificial neural network models (in Chinese)
    • Wang S J, Guan D S. Remote sensing method of forest biomass estimation by artificial neural network models (in Chinese). Ecol Environ, 2007, 16: 108-111.
    • (2007) Ecol Environ , vol.16 , pp. 108-111
    • Wang, S.J.1    Guan, D.S.2
  • 36
    • 54049100690 scopus 로고    scopus 로고
    • A neural network approach to simple prediction of soil nitrification potential: A case study in Japanese temperate forests
    • Ito E, Ono K, Ito Y M, et al. A neural network approach to simple prediction of soil nitrification potential: A case study in Japanese temperate forests. Ecol Model, 2008, 219: 200-211.
    • (2008) Ecol Model , vol.219 , pp. 200-211
    • Ito, E.1    Ono, K.2    Ito, Y.M.3
  • 37
    • 0035891835 scopus 로고    scopus 로고
    • The effect of climate change on tropical rainforest vegetation pattern
    • Ostendorf B, Hilbert D W, Hopkins M S. The effect of climate change on tropical rainforest vegetation pattern. Ecol Model, 2001, 145: 211-224.
    • (2001) Ecol Model , vol.145 , pp. 211-224
    • Ostendorf, B.1    Hilbert, D.W.2    Hopkins, M.S.3
  • 38
    • 57349098792 scopus 로고    scopus 로고
    • Predict soil texture distributions using an artificial neural network model
    • Zhao Z Y, Chow T L, Herb W R, et al. Predict soil texture distributions using an artificial neural network model. Comput Electron Agr, 2009, 65: 36-48.
    • (2009) Comput Electron Agr , vol.65 , pp. 36-48
    • Zhao, Z.Y.1    Chow, T.L.2    Herb, W.R.3
  • 39
    • 3342897624 scopus 로고    scopus 로고
    • Discrimination of sunflower, weed and soil by artificial neural networks
    • Kavdir I. Discrimination of sunflower, weed and soil by artificial neural networks. Comput Electron Agr, 2004, 44: 153-160.
    • (2004) Comput Electron Agr , vol.44 , pp. 153-160
    • Kavdir, I.1
  • 40
    • 33646452133 scopus 로고    scopus 로고
    • Neural network model for leaf chlorophyll content of roadside trees based on hyperspectral approaches (in Chinese)
    • Liu D W, Song K S, Zhang B. Neural network model for leaf chlorophyll content of roadside trees based on hyperspectral approaches (in Chinese). Chin J Ecol, 2006, 25: 238-242.
    • (2006) Chin J Ecol , vol.25 , pp. 238-242
    • Liu, D.W.1    Song, K.S.2    Zhang, B.3
  • 41
    • 0037202445 scopus 로고    scopus 로고
    • Comparing five modelling techniques for predicting forest characteristics
    • Moisen G G, Frescino T S. Comparing five modelling techniques for predicting forest characteristics. Ecol Model, 2002, 157: 209-225.
    • (2002) Ecol Model , vol.157 , pp. 209-225
    • Moisen, G.G.1    Frescino, T.S.2
  • 42
    • 57949096968 scopus 로고    scopus 로고
    • Application of artificial neural network in optimization of vegetation types in watershed (in Chinese)
    • Hu S P, Yu X X, Wang X P, et al. Application of artificial neural network in optimization of vegetation types in watershed (in Chinese). J Beijing Forest Univ, 2008, 30(Suppl II): 1-5.
    • (2008) J Beijing Forest Univ , vol.30 , Issue.SUPPL. II , pp. 1-5
    • Hu, S.P.1    Yu, X.X.2    Wang, X.P.3
  • 43
    • 33748787421 scopus 로고    scopus 로고
    • Comparisons of gap-filling methods for carbon flux dataset: A combination of a genetic algorithm and an artificial neural network
    • Ooba M, Hirano T, Mogami J-I, et al. Comparisons of gap-filling methods for carbon flux dataset: A combination of a genetic algorithm and an artificial neural network. Ecol Model, 2006, 198: 473-486.
    • (2006) Ecol Model , vol.198 , pp. 473-486
    • Ooba, M.1    Hirano, T.2    Mogami, J.-I.3
  • 44
    • 33746615637 scopus 로고    scopus 로고
    • Neural network grade program of natural forest protection (in Chinese)
    • Luo C W, Chen Y, Hu H Q, et al. Neural network grade program of natural forest protection (in Chinese). Chin J Appl Ecol, 2005, 1: 1002-1006.
    • (2005) Chin J Appl Ecol , vol.1 , pp. 1002-1006
    • Luo, C.W.1    Chen, Y.2    Hu, H.Q.3
  • 45
    • 34447574678 scopus 로고    scopus 로고
    • Development of a neural network model to update forest distribution data for managed alpine stands
    • Scrinzi G, Marzullo L, Galvagni D. Development of a neural network model to update forest distribution data for managed alpine stands. Ecol Model, 2007, 206: 331-346.
    • (2007) Ecol Model , vol.206 , pp. 331-346
    • Scrinzi, G.1    Marzullo, L.2    Galvagni, D.3
  • 46
    • 78650040669 scopus 로고    scopus 로고
    • Uses the artificial intelligence neural network and the DEM data carries on the vegetation change survey (in Chinese)
    • Zhang Z M, Verbeke L P C, Clercq E M D. Uses the artificial intelligence neural network and the DEM data carries on the vegetation change survey (in Chinese). Chinese Sci Bull, 2007, 52(Suppl II): 201-210.
    • (2007) Chinese Sci Bull , vol.52 , Issue.SUPPL. II , pp. 201-210
    • Zhang, Z.M.1    Verbeke, L.P.C.2    Clercq, E.M.D.3
  • 47
    • 0033410249 scopus 로고    scopus 로고
    • Predictive modelling of coniferous forest age using statistical and artificial neural network approaches applied to remote sensor data
    • Jensen J R, Qiu F, Ji M. Predictive modelling of coniferous forest age using statistical and artificial neural network approaches applied to remote sensor data. Int J Remote Sens, 1999, 20: 2805-2822.
    • (1999) Int J Remote Sens , vol.20 , pp. 2805-2822
    • Jensen, J.R.1    Qiu, F.2    Ji, M.3
  • 48
    • 58149492452 scopus 로고    scopus 로고
    • Estimation of forest volume in Huzhong forest area based on RS, GIS and ANN (in Chinese)
    • Liu Z H, Chang Y, Chen H W. Estimation of forest volume in Huzhong forest area based on RS, GIS and ANN (in Chinese). Chin J Appl Ecol, 2008, 19: 1891-1896.
    • (2008) Chin J Appl Ecol , vol.19 , pp. 1891-1896
    • Liu, Z.H.1    Chang, Y.2    Chen, H.W.3
  • 49
    • 42449119737 scopus 로고    scopus 로고
    • Remote sensing estimation of natural forest biomass on an artificial neural network (in Chinese)
    • Wang L H, Xing Y Q. Remote sensing estimation of natural forest biomass on an artificial neural network (in Chinese). Chin J Appl Ecol, 2008, 19: 261-266.
    • (2008) Chin J Appl Ecol , vol.19 , pp. 261-266
    • Wang, L.H.1    Xing, Y.Q.2
  • 50
    • 33846302796 scopus 로고    scopus 로고
    • Evaluation of regional ecotourism suitability based on GIS and artificial neural network model: A case study of Zhejiang Province (in Chinese)
    • Zheng X X, Sun M, Chen Y, et al. Evaluation of regional ecotourism suitability based on GIS and artificial neural network model: A case study of Zhejiang Province (in Chinese). Chin J Ecol, 2006, 25: 1435-1441.
    • (2006) Chin J Ecol , vol.25 , pp. 1435-1441
    • Zheng, X.X.1    Sun, M.2    Chen, Y.3
  • 51
    • 70349558274 scopus 로고    scopus 로고
    • Spatial changes in soil organic carbon density and storage of cultivatedsoils in China from 1980 to 2000
    • Yu Y Y, Guo Z T, Wu H B, et al. Spatial changes in soil organic carbon density and storage of cultivatedsoils in China from 1980 to 2000. Glob Biogeochem Cycles, 2009, 23: GB2021.
    • (2009) Glob Biogeochem Cycles , vol.23
    • Yu, Y.Y.1    Guo, Z.T.2    Wu, H.B.3
  • 52
    • 0024924674 scopus 로고
    • Automatic labeling and characterization of objects using artificial neural networks
    • Campbell W J, Hill S E, Cormp R F. Automatic labeling and characterization of objects using artificial neural networks. Telemat Infoemat, 1989, 6: 259-271.
    • (1989) Telemat Infoemat , vol.6 , pp. 259-271
    • Campbell, W.J.1    Hill, S.E.2    Cormp, R.F.3
  • 54
    • 0025573206 scopus 로고
    • Artificial neural network classification using a minimal training set: Comparison to conventional supervised classification
    • Hepner G F, Logan T, Ritter N, et al. Artificial neural network classification using a minimal training set: Comparison to conventional supervised classification. Photogram Eng Remote Sens, 1990, 56: 469-473.
    • (1990) Photogram Eng Remote Sens , vol.56 , pp. 469-473
    • Hepner, G.F.1    Logan, T.2    Ritter, N.3
  • 55
    • 0012317968 scopus 로고
    • A performance comparison of Landsat Thematic mapper land cover classification based on neural network techniques and traditional maximum likelihood algorithms and minimum distance algorithms
    • Nottingham: The Remote Sensing Society
    • Downey I D, Power C H, Kanellopoulos I, et al. A performance comparison of Landsat Thematic mapper land cover classification based on neural network techniques and traditional maximum likelihood algorithms and minimum distance algorithms. In: Proceeding of the Annual Conference of the Remote Sensing Society. The Remote Sensing Society: Nottingham, 1992. 518-528.
    • (1992) Proceeding of the Annual Conference of the Remote Sensing Society , pp. 518-528
    • Downey, I.D.1    Power, C.H.2    Kanellopoulos, I.3
  • 56
    • 78650054373 scopus 로고    scopus 로고
    • Application of Artificial neural network in forest resource management (in Chinese)
    • Lin H, Peng C H. Application of Artificial neural network in forest resource management (in Chinese). World Forest Res, 2002, 15: 22-31.
    • (2002) World Forest Res , vol.15 , pp. 22-31
    • Lin, H.1    Peng, C.H.2
  • 57
    • 0036837310 scopus 로고    scopus 로고
    • Using neural networks and GIS to forecast land use changes: A land transformation model
    • Pijanowski B C, Brown D G, Shellito B A, et al. Using neural networks and GIS to forecast land use changes: A land transformation model. Comput Environ Urban Syst, 2002, 26: 553-575.
    • (2002) Comput Environ Urban Syst , vol.26 , pp. 553-575
    • Pijanowski, B.C.1    Brown, D.G.2    Shellito, B.A.3
  • 58
    • 78650048297 scopus 로고    scopus 로고
    • Use GIS and ANN to forecast land use change (in Chinese)
    • Zhang M Y. Use GIS and ANN to forecast land use change (in Chinese). J Yanshan Univ, 2004, 28: 279-282.
    • (2004) J Yanshan Univ , vol.28 , pp. 279-282
    • Zhang, M.Y.1
  • 59
    • 78650059657 scopus 로고    scopus 로고
    • The predictive system of land use change based on integration the modelbase into GIS (in Chinese)
    • Bai M Z, Yue Q L. The predictive system of land use change based on integration the modelbase into GIS (in Chinese). J East China Inst Tech, 2007, 30: 345-349.
    • (2007) J East China Inst Tech , vol.30 , pp. 345-349
    • Bai, M.Z.1    Yue, Q.L.2
  • 61
    • 16244365566 scopus 로고    scopus 로고
    • Assessing the fragility of ecosystem using artificial neural network model (in Chinese)
    • Li S C, Wu S H, Dai E F. Assessing the fragility of ecosystem using artificial neural network model (in Chinese). Acta Ecol Sin, 2005, 25: 621-626.
    • (2005) Acta Ecol Sin , vol.25 , pp. 621-626
    • Li, S.C.1    Wu, S.H.2    Dai, E.F.3
  • 62
    • 78650049632 scopus 로고    scopus 로고
    • Modelling of complex ecosystem's stability with artificial neural network (in Chinese)
    • Wen Z Y, Cao L P. Modelling of complex ecosystem's stability with artificial neural network (in Chinese). J Hunan Agr Univ, 2006, 32: 674-678.
    • (2006) J Hunan Agr Univ , vol.32 , pp. 674-678
    • Wen, Z.Y.1    Cao, L.P.2
  • 63
    • 79959950563 scopus 로고    scopus 로고
    • Assessment model of townlet eco-environmental quality based on BP artificial neural network (in Chinese)
    • Li L, Zhang H T. Assessment model of townlet eco-environmental quality based on BP artificial neural network (in Chinese). Chin J Appl Ecol, 2008, 19: 2693-2698.
    • (2008) Chin J Appl Ecol , vol.19 , pp. 2693-2698
    • Li, L.1    Zhang, H.T.2
  • 64
    • 33750418842 scopus 로고    scopus 로고
    • Evaluation of eco-environmental quality based on artificial neural network and remote sensing techniques (in Chinese)
    • Li H Y, Shi Z, Sha J M, et al. Evaluation of eco-environmental quality based on artificial neural network and remote sensing techniques (in Chinese). Chin J Appl Ecol, 2006, 17: 1475-1480.
    • (2006) Chin J Appl Ecol , vol.17 , pp. 1475-1480
    • Li, H.Y.1    Shi, Z.2    Sha, J.M.3
  • 65
    • 9644254205 scopus 로고    scopus 로고
    • Artificial neural networks for risk decision support in natural hazards: A case study of assessing the probability of house survival from bushfires
    • Chen K, Jacobson C, Blong R. Artificial neural networks for risk decision support in natural hazards: A case study of assessing the probability of house survival from bushfires. Environ Model Assess, 2004, 9: 189-199.
    • (2004) Environ Model Assess , vol.9 , pp. 189-199
    • Chen, K.1    Jacobson, C.2    Blong, R.3
  • 66
    • 78650074035 scopus 로고    scopus 로고
    • Forest fire prediction research based on VLBP neural network (in Chinese)
    • Jiang W, Feng Z K, Hu L. Forest fire prediction research based on VLBP neural network (in Chinese). Forest Resour Manage, 2007, 1: 95-98.
    • (2007) Forest Resour Manage , vol.1 , pp. 95-98
    • Jiang, W.1    Feng, Z.K.2    Hu, L.3
  • 67
    • 33747603206 scopus 로고    scopus 로고
    • Modelling global insect pest species assemblages to determine risk of invasion
    • Worner S P, Gevrey M. Modelling global insect pest species assemblages to determine risk of invasion. J Appl Ecol, 2006, 43: 858-867.
    • (2006) J Appl Ecol , vol.43 , pp. 858-867
    • Worner, S.P.1    Gevrey, M.2
  • 68
    • 78650041475 scopus 로고    scopus 로고
    • Artificial neural network technology in the application of wood science (in Chinese)
    • Fei B H, Guo W, Zang S N, et al. Artificial neural network technology in the application of wood science (in Chinese). Wood Process Mach, 2009, 3: 34-37.
    • (2009) Wood Process Mach , vol.3 , pp. 34-37
    • Fei, B.H.1    Guo, W.2    Zang, S.N.3
  • 69
    • 33744999005 scopus 로고    scopus 로고
    • Applications of artificial neural networks to geosciences: Review and prospect (in Chinese)
    • Li S C, Zheng D. Applications of artificial neural networks to geosciences: Review and prospect (in Chinese). Adv Earth Sci, 2003, 18: 68-76.
    • (2003) Adv Earth Sci , vol.18 , pp. 68-76
    • Li, S.C.1    Zheng, D.2
  • 70
    • 33749346754 scopus 로고    scopus 로고
    • The application of artificial neural networks in the resources and environment (in Chinese)
    • Wu H J, Lin Z Y, Guo S L. The application of artificial neural networks in the resources and environment (in Chinese). Resour Enviro Yangtze Basin, 2000, 9: 237-241.
    • (2000) Resour Enviro Yangtze Basin , vol.9 , pp. 237-241
    • Wu, H.J.1    Lin, Z.Y.2    Guo, S.L.3
  • 71
    • 78650074862 scopus 로고    scopus 로고
    • Samples complexity estimation algorithm optimizes structure of artificial neural network (in Chinese)
    • Yang Y. Samples complexity estimation algorithm optimizes structure of artificial neural network (in Chinese). J Guang Dong Commun Polytech, 2009, 8: 45-48.
    • (2009) J Guang Dong Commun Polytech , vol.8 , pp. 45-48
    • Yang, Y.1
  • 72
    • 34247525561 scopus 로고    scopus 로고
    • An approach for determining relative input parameter importance and significance in artificial neural networks
    • Kemp S J, Zaradic P, Hansen F. An approach for determining relative input parameter importance and significance in artificial neural networks. Ecol Model, 2007, 204: 326-334.
    • (2007) Ecol Model , vol.204 , pp. 326-334
    • Kemp, S.J.1    Zaradic, P.2    Hansen, F.3
  • 73
    • 0037442845 scopus 로고    scopus 로고
    • Review and comparison of methods to study the contribution of variables in artificial neural network models
    • Gevrey M, Dimopoulos I, Lek S. Review and comparison of methods to study the contribution of variables in artificial neural network models. Ecol Model, 2003, 160: 249-264.
    • (2003) Ecol Model , vol.160 , pp. 249-264
    • Gevrey, M.1    Dimopoulos, I.2    Lek, S.3
  • 74
    • 3242721368 scopus 로고    scopus 로고
    • An accurate comparison of methods for quantifying variable importance in artificial neural networks using simulated data
    • Olden J D, Joy M K, Death R G. An accurate comparison of methods for quantifying variable importance in artificial neural networks using simulated data. Ecol Model, 2004, 178: 389-397.
    • (2004) Ecol Model , vol.178 , pp. 389-397
    • Olden, J.D.1    Joy, M.K.2    Death, R.G.3
  • 76
    • 43049122085 scopus 로고    scopus 로고
    • Scenario simulation and forecast of land use/cover in northern China
    • Li Y C, He C Y. Scenario simulation and forecast of land use/cover in northern China. Chinese Sci Bull, 2008, 53: 1401-1412.
    • (2008) Chinese Sci Bull , vol.53 , pp. 1401-1412
    • Li, Y.C.1    He, C.Y.2
  • 77
    • 33646143005 scopus 로고    scopus 로고
    • Genetic algorithms for optimisation of predictive ecosystems models based on decision trees and neural networks
    • D'heygere T, Goethals P L M, Pauw N D. Genetic algorithms for optimisation of predictive ecosystems models based on decision trees and neural networks. Ecol Model, 2006, 195: 20-29.
    • (2006) Ecol Model , vol.195 , pp. 20-29
    • D'Heygere, T.1    Goethals, P.L.M.2    Pauw, N.D.3
  • 78
    • 36349010223 scopus 로고    scopus 로고
    • Systematic bias in land surface models
    • Abramowitz G, Pitman A, Gupta H, et al. Systematic bias in land surface models. J Hydrometeorol, 2007, 8: 989-1101.
    • (2007) J Hydrometeorol , vol.8 , pp. 989-1101
    • Abramowitz, G.1    Pitman, A.2    Gupta, H.3
  • 79
    • 78650064001 scopus 로고    scopus 로고
    • Based on artificial neural networks information processing
    • Geng Y, Dong Y Q, Guo H. Based on artificial neural networks information processing. Project Security, 2009, 6: 50.
    • (2009) Project Security , vol.6 , pp. 50
    • Geng, Y.1    Dong, Y.Q.2    Guo, H.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.