메뉴 건너뛰기




Volumn 72, Issue 13-15, 2009, Pages 2796-2805

Selective negative correlation learning approach to incremental learning

Author keywords

Incremental learning; Negative correlation learning; Neural network ensemble; Selective ensemble

Indexed keywords

CLONING; EVOLUTIONARY ALGORITHMS;

EID: 78149452320     PISSN: 09252312     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.neucom.2008.09.022     Document Type: Article
Times cited : (27)

References (33)
  • 1
    • 0036275180 scopus 로고    scopus 로고
    • An evolutionary artificial neural networks approach for breast cancer diagnosis
    • H.A. Abbass, An evolutionary artificial neural networks approach for breast cancer diagnosis, Artificial Intelligence in Medicine 25 (2002) 265-281.
    • (2002) Artificial Intelligence in Medicine , vol.25 , pp. 265-281
    • Abbass, H.A.1
  • 2
    • 10444241776 scopus 로고    scopus 로고
    • Ph.D. Thesis, School of Computer Science, University of Birmingham
    • G. Brown, Diversity in neural network ensembles, Ph.D. Thesis, School of Computer Science, University of Birmingham, 2004.
    • (2004) Diversity in neural network ensembles
    • Brown, G.1
  • 3
    • 0025889915 scopus 로고
    • ARTMAP: Supervised real-time learning and classification of nonstationary data by a self organizing neural network
    • G.A. Carpenter, S. Grossberg, J.H. Reynolds, ARTMAP: supervised real-time learning and classification of nonstationary data by a self organizing neural network, Neural Networks 4 (1991) 565-588.
    • (1991) Neural Networks , vol.4 , pp. 565-588
    • Carpenter, G.A.1    Grossberg, S.2    Reynolds, J.H.3
  • 4
    • 0026923589 scopus 로고
    • Fuzzy ARTMAP: A neural network architecture for incremental supervised learning of analog multidimensional maps
    • G.A. Carpenter, S. Grossberg, N. Markuzon, J.H. Reynolds, Fuzzy ARTMAP: a neural network architecture for incremental supervised learning of analog multidimensional maps, IEEE Transactions on Neural Networks 3 (1992) 698-713.
    • (1992) IEEE Transactions on Neural Networks , vol.3 , pp. 698-713
    • Carpenter, G.A.1    Grossberg, S.2    Markuzon, N.3    Reynolds, J.H.4
  • 5
    • 17444369339 scopus 로고    scopus 로고
    • A preliminary study on negative correlation learning via correlation-corrected data (NCCD)
    • Z.S.H. Chan, N. Kasabov, A preliminary study on negative correlation learning via correlation-corrected data (NCCD), Neural Processing Letters 21 (2005) 207-214.
    • (2005) Neural Processing Letters , vol.21 , pp. 207-214
    • Chan, Z.S.H.1    Kasabov, N.2
  • 8
    • 0034499376 scopus 로고    scopus 로고
    • A note on the utility of incremental learning
    • C. Giraud-Carrier, A note on the utility of incremental learning, AI Communications 13 (2000) 215-223.
    • (2000) AI Communications , vol.13 , pp. 215-223
    • Giraud-Carrier, C.1
  • 11
  • 12
    • 0037403516 scopus 로고    scopus 로고
    • Measures of diversity in classifier ensembles and their relationship with the ensemble accuracy
    • L. Kuncheva, C. Whitaker, Measures of diversity in classifier ensembles and their relationship with the ensemble accuracy, Machine Learning 51 (2003) 181-207.
    • (2003) Machine Learning , vol.51 , pp. 181-207
    • Kuncheva, L.1    Whitaker, C.2
  • 16
    • 0033485370 scopus 로고    scopus 로고
    • Ensemble learning via negative correlation
    • Y Liu, X. Yao, Ensemble learning via negative correlation, Neural Networks 12 (1999)1399-1404.
    • (1999) Neural Networks , vol.12 , pp. 1399-1404
    • Liu, Y.1    Yao, X.2
  • 23
    • 13444254301 scopus 로고    scopus 로고
    • GenDiS: Genomic distribution of protein structural domain superfamilies
    • G. Pugalenthi, A. Bhaduri, R. Sowdhamini, GenDiS: genomic distribution of protein structural domain superfamilies, Nucleic Acids Research 33 (2005) D252-D255.
    • (2005) Nucleic Acids Research , vol.33
    • Pugalenthi, G.1    Bhaduri, A.2    Sowdhamini, R.3
  • 25
    • 38649097852 scopus 로고    scopus 로고
    • A machine learning approach for the identification of odorant binding proteins from sequence-derived properties
    • G. Pugalenthi, K. Tang, P.N. Suganthan, G. Archunan, R. Sowdhamini, A machine learning approach for the identification of odorant binding proteins from sequence-derived properties, BMC-Bioinformatics 8 (2007) 351.
    • (2007) BMC-Bioinformatics , vol.8 , pp. 351
    • Pugalenthi, G.1    Tang, K.2    Suganthan, P.N.3    Archunan, G.4    Sowdhamini, R.5
  • 26
    • 58349085114 scopus 로고    scopus 로고
    • Identification of structurally conserved residues of proteins in absence of structural homologs using neural network ensemble
    • G. Pugalenthi, Ke Tang, P.N. Suganthan, S. Chakrabarti, Identification of structurally conserved residues of proteins in absence of structural homologs using neural network ensemble, Bioinformatics 25 (2) (2009) 204-210.
    • (2009) Bioinformatics , vol.25 , Issue.2 , pp. 204-210
    • Pugalenthi, G.1    Tang, K.2    Suganthan, P.N.3    Chakrabarti, S.4
  • 27
    • 0037806811 scopus 로고    scopus 로고
    • The boosting approach to machine learning: An overview
    • D.D. Denison, M.H. Hansen, C. Holmes, B. Mallick, B. Yu (Eds.), Springer, Berlin
    • R.E. Schapire, The boosting approach to machine learning: an overview, in: D.D. Denison, M.H. Hansen, C. Holmes, B. Mallick, B. Yu (Eds.), Nonlinear Estimation and Classification, Springer, Berlin, 2003.
    • (2003) Nonlinear Estimation and Classification
    • Schapire, R.E.1
  • 29
    • 0030925920 scopus 로고    scopus 로고
    • Pfam: A comprehensive database of protein domain families based on seed alignments
    • E.L. Sonnhammer, S.R. Eddy, R. Durbin, Pfam: a comprehensive database of protein domain families based on seed alignments, Proteins 28 (1997) 405-420.
    • (1997) Proteins , vol.28 , pp. 405-420
    • Sonnhammer, E.L.1    Eddy, S.R.2    Durbin, R.3
  • 33
    • 0036567392 scopus 로고    scopus 로고
    • Ensembling neural networks: Many could be better than all
    • Z. Zhou, J. Wu, W. Tang, Ensembling neural networks: many could be better than all, Artificial Intelligence 137 (2002) 239-263.
    • (2002) Artificial Intelligence , vol.137 , pp. 239-263
    • Zhou, Z.1    Wu, J.2    Tang, W.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.