메뉴 건너뛰기




Volumn 33, Issue 3, 2010, Pages 318-329

Rule-based data mining for yield improvement in semiconductor manufacturing

Author keywords

Data mining; Industrial application; Regression rules decision rules; Semiconductor manufacturing

Indexed keywords

AUTOMATED SYSTEMS; BINARY REGRESSION; PERFORMANCE IMPROVEMENTS; PERFORMANCE VALUE; POWER CONSUMPTION; REGRESSION RULES/DECISION RULES; RULE BASED; SEMICONDUCTOR MANUFACTURING; SPEED CHARACTERISTICS; YIELD IMPROVEMENT;

EID: 78149284202     PISSN: 0924669X     EISSN: None     Source Type: Journal    
DOI: 10.1007/s10489-009-0168-9     Document Type: Article
Times cited : (15)

References (21)
  • 1
    • 28744436092 scopus 로고    scopus 로고
    • Advancements and applications of statistical learning/data mining in semiconductor manufacturing
    • R Goodwin R Miller E Tuv A Borisov M Janakiram S Louchheim 2004 Advancements and applications of statistical learning/data mining in semiconductor manufacturing Intel Technol J 8 4 325 336
    • (2004) Intel Technol J , vol.8 , Issue.4 , pp. 325-336
    • Goodwin, R.1    Miller, R.2    Tuv, E.3    Borisov, A.4    Janakiram, M.5    Louchheim, S.6
  • 2
    • 33751110224 scopus 로고    scopus 로고
    • Data mining in manufacturing: A review
    • 10.1115/1.2194554
    • J Harding M Shahbaz Srinivas A Kusiak 2006 Data mining in manufacturing: A review Manuf Sci Engin 128 4 969 976 10.1115/1.2194554
    • (2006) Manuf Sci Engin , vol.128 , Issue.4 , pp. 969-976
    • Harding, J.1    Shahbaz, M.2    Srinivas3    Kusiak, A.4
  • 4
    • 9144249190 scopus 로고    scopus 로고
    • Yield learning and the sources of profitability in semiconductor manufacturing and process development
    • 10.1109/TSM.2004.835724
    • C Weber 2004 Yield learning and the sources of profitability in semiconductor manufacturing and process development IEEE Trans Semicond Manuf 17 4 590 596 10.1109/TSM.2004.835724
    • (2004) IEEE Trans Semicond Manuf , vol.17 , Issue.4 , pp. 590-596
    • Weber, C.1
  • 8
    • 0027271787 scopus 로고
    • Predicting defects in disk drive manufacturing: A case study in high-dimensional classification
    • Apte C, Weiss S, Grout G (1993) Predicting defects in disk drive manufacturing: A case study in high-dimensional classification. In: IEEE CAIA (93), pp 212-218
    • (1993) IEEE CAIA , Issue.93 , pp. 212-218
    • Apte, C.1    Weiss, S.2    Grout, G.3
  • 12
    • 0034960598 scopus 로고    scopus 로고
    • Rough set theory: A data mining tool for semiconductor manufacturing
    • 10.1109/6104.924792
    • A Kusiak 2001 Rough set theory: a data mining tool for semiconductor manufacturing IEEE Trans Electron Packag Manuf 24 1 44 50 10.1109/6104.924792
    • (2001) IEEE Trans Electron Packag Manuf , vol.24 , Issue.1 , pp. 44-50
    • Kusiak, A.1
  • 13
    • 6444235719 scopus 로고    scopus 로고
    • Derivation of decision rules for the evaluation of product performance using genetic algorithms and rough set theory
    • Kluwer Academic Dordrecht
    • Lian-Yin Z, Li-Pheng K, Sai-Cheong F (2002) Derivation of decision rules for the evaluation of product performance using genetic algorithms and rough set theory. In: Data mining for design and manufacturing: methods and applications. Kluwer Academic, Dordrecht, pp 337-353
    • (2002) Data Mining for Design and Manufacturing: Methods and Applications , pp. 337-353
    • Lian-Yin, Z.1    Li-Pheng, K.2    Sai-Cheong, F.3
  • 14
    • 33644674337 scopus 로고    scopus 로고
    • Data mining algorithm for manufacturing process control
    • 10.1007/s00170-004-2367-1
    • H Sadoyan A Zakarian P Mohanty 2006 Data mining algorithm for manufacturing process control Int J Adv Manuf Technol 28 3/4 342 350 10.1007/s00170-004-2367-1
    • (2006) Int J Adv Manuf Technol , vol.28 , Issue.3-4 , pp. 342-350
    • Sadoyan, H.1    Zakarian, A.2    Mohanty, P.3
  • 15
    • 44849094132 scopus 로고    scopus 로고
    • Extraction of maximum support rules for the root cause analysis
    • 10.1007/978-3-540-79257-4-6
    • T Hrycej C Strobel 2008 Extraction of maximum support rules for the root cause analysis Comput Intell Automot Appl 132 89 99 10.1007/978-3-540-79257-4-6
    • (2008) Comput Intell Automot Appl , vol.132 , pp. 89-99
    • Hrycej, T.1    Strobel, C.2
  • 19
    • 33845660695 scopus 로고    scopus 로고
    • Data mining for yield enhancement in semiconductor manufacturing and an empirical study
    • 10.1016/j.eswa.2006.04.014
    • C Chien W Wang J Cheng 2007 Data mining for yield enhancement in semiconductor manufacturing and an empirical study Expert Syst Appl 33 1 192 198 10.1016/j.eswa.2006.04.014
    • (2007) Expert Syst Appl , vol.33 , Issue.1 , pp. 192-198
    • Chien, C.1    Wang, W.2    Cheng, J.3
  • 20
    • 43949083989 scopus 로고    scopus 로고
    • Mining manufacturing data using genetic algorithm-based feature set decomposition
    • L Rokach 2008 Mining manufacturing data using genetic algorithm-based feature set decomposition Int J Intell Syst Technol Appl 4 1/2 57 78
    • (2008) Int J Intell Syst Technol Appl , vol.4 , Issue.1-2 , pp. 57-78
    • Rokach, L.1
  • 21
    • 0035788903 scopus 로고    scopus 로고
    • Solving regression problems with rule-based ensemble classifiers
    • Weiss S, Indurkhya N (2001) Solving regression problems with rule-based ensemble classifiers. In: Proceedings of KDD-2001
    • (2001) Proceedings of KDD-2001
    • Weiss, S.1    Indurkhya, N.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.