-
1
-
-
43049170468
-
-
10.1016/j.ssc.2008.02.024
-
K. I. Bolotin, Solid State Commun. 146, 351 (2008). 10.1016/j.ssc.2008. 02.024
-
(2008)
Solid State Commun.
, vol.146
, pp. 351
-
-
Bolotin, K.I.1
-
2
-
-
50249145723
-
-
10.1103/PhysRevLett.101.096802
-
K. I. Bolotin, Phys. Rev. Lett. 101, 096802 (2008). 10.1103/PhysRevLett. 101.096802
-
(2008)
Phys. Rev. Lett.
, vol.101
, pp. 096802
-
-
Bolotin, K.I.1
-
3
-
-
59949098337
-
-
10.1103/RevModPhys.81.109
-
A. H. Castro Neto, Rev. Mod. Phys. 81, 109 (2009). 10.1103/RevModPhys.81. 109
-
(2009)
Rev. Mod. Phys.
, vol.81
, pp. 109
-
-
Castro Neto, A.H.1
-
4
-
-
67649225738
-
-
10.1126/science.1158877
-
A. K. Geim, Science 324, 1530 (2009). 10.1126/science.1158877
-
(2009)
Science
, vol.324
, pp. 1530
-
-
Geim, A.K.1
-
7
-
-
33847306075
-
-
10.1143/JPSJ.75.074716
-
T. Ando, J. Phys. Soc. Jpn. 75, 074716 (2006). 10.1143/JPSJ.75.074716
-
(2006)
J. Phys. Soc. Jpn.
, vol.75
, pp. 074716
-
-
Ando, T.1
-
11
-
-
77249170330
-
-
10.1103/PhysRevLett.104.076802
-
M. Titov, Phys. Rev. Lett. 104, 076802 (2010). 10.1103/PhysRevLett.104. 076802
-
(2010)
Phys. Rev. Lett.
, vol.104
, pp. 076802
-
-
Titov, M.1
-
13
-
-
43149118786
-
-
10.1038/nphys935
-
J. H. Chen, Nat. Phys. 4, 377 (2008). 10.1038/nphys935
-
(2008)
Nat. Phys.
, vol.4
, pp. 377
-
-
Chen, J.H.1
-
14
-
-
67249162996
-
-
10.1103/PhysRevLett.102.236805
-
J. H. Chen, Phys. Rev. Lett. 102, 236805 (2009). 10.1103/PhysRevLett.102. 236805
-
(2009)
Phys. Rev. Lett.
, vol.102
, pp. 236805
-
-
Chen, J.H.1
-
15
-
-
68749103584
-
-
10.1103/PhysRevLett.103.056404
-
A. Bostwick, Phys. Rev. Lett. 103, 056404 (2009). 10.1103/PhysRevLett. 103.056404
-
(2009)
Phys. Rev. Lett.
, vol.103
, pp. 056404
-
-
Bostwick, A.1
-
16
-
-
59149091893
-
-
10.1126/science.1167130
-
D. C. Elias, Science 323, 610 (2009). 10.1126/science.1167130
-
(2009)
Science
, vol.323
, pp. 610
-
-
Elias, D.C.1
-
17
-
-
77957596722
-
-
arXiv:1003.0202.v2 (unpublished).
-
Z. H. Ni, arXiv:1003.0202. v2 (unpublished).
-
-
-
Ni, Z.H.1
-
18
-
-
66049085166
-
-
10.1103/PhysRevLett.102.206603
-
L. A. Ponomarenko, Phys. Rev. Lett. 102, 206603 (2009). 10.1103/PhysRevLett.102.206603
-
(2009)
Phys. Rev. Lett.
, vol.102
, pp. 206603
-
-
Ponomarenko, L.A.1
-
19
-
-
53549085391
-
-
10.1103/PhysRevLett.101.146805
-
C. Jang, Phys. Rev. Lett. 101, 146805 (2008). 10.1103/PhysRevLett.101. 146805
-
(2008)
Phys. Rev. Lett.
, vol.101
, pp. 146805
-
-
Jang, C.1
-
20
-
-
77957567978
-
-
Graphene is obtained from Kish graphite by mechanical exfoliation (Ref.) on 280 nm SiO2 over doped Si, which is used as the back gate. Raman spectroscopy is used to confirm that the samples are single layer graphene. Au/Cr electrodes, defined by electron-beam lithography, contact the graphene sheets. The devices are annealed in H2 /Ar at 300°C for 1 hour to remove resist residues. Each device is annealed in ultrahigh vacuum at 490 K for longer than 8 hours to eliminate any residual adsorbates prior to hydrogen dosing experiments.
-
Graphene is obtained from Kish graphite by mechanical exfoliation (Ref.) on 280 nm SiO 2 over doped Si, which is used as the back gate. Raman spectroscopy is used to confirm that the samples are single layer graphene. Au/Cr electrodes, defined by electron-beam lithography, contact the graphene sheets. The devices are annealed in H 2 / Ar at 300 ° C for 1 hour to remove resist residues. Each device is annealed in ultrahigh vacuum at 490 K for longer than 8 hours to eliminate any residual adsorbates prior to hydrogen dosing experiments.
-
-
-
-
21
-
-
77957556881
-
-
The voltage probes were placed on graphene areas measuring (length×width ) 5.0×6.μ m2 (sample A), 0.74×0.31μ m2 (sample B), and 7.8×8.2μ m2 (sample C).
-
The voltage probes were placed on graphene areas measuring (length × width) 5.0 × 6.4 μ m 2 (sample A), 0.74 × 0.31 μ m 2 (sample B), and 7.8 × 8.2 μ m 2 (sample C).
-
-
-
-
22
-
-
77957604457
-
-
Dosing is done at a constant temperature, which varied between different devices.
-
Dosing is done at a constant temperature, which varied between different devices.
-
-
-
-
23
-
-
77957595147
-
-
The dosage rate is estimated from the angular distribution of atomic hydrogen provided by the manufacturer.
-
The dosage rate is estimated from the angular distribution of atomic hydrogen provided by the manufacturer.
-
-
-
-
24
-
-
59149103208
-
-
10.1021/nl802940s
-
S. Ryu, Nano Lett. 8, 4597 (2008). 10.1021/nl802940s
-
(2008)
Nano Lett.
, vol.8
, pp. 4597
-
-
Ryu, S.1
-
27
-
-
64149126156
-
-
10.1016/j.physrep.2009.02.003
-
L. M. Malard, Phys. Rep. 473, 51 (2009). 10.1016/j.physrep.2009.02.003
-
(2009)
Phys. Rep.
, vol.473
, pp. 51
-
-
Malard, L.M.1
-
28
-
-
75749123538
-
-
10.1016/j.carbon.2009.12.057
-
M. M. Lucchese, Carbon 48, 1592 (2010). 10.1016/j.carbon.2009.12.057
-
(2010)
Carbon
, vol.48
, pp. 1592
-
-
Lucchese, M.M.1
-
29
-
-
33646169643
-
-
10.1063/1.2196057
-
L. G. Cançado, Appl. Phys. Lett. 88, 163106 (2006). 10.1063/1.2196057
-
(2006)
Appl. Phys. Lett.
, vol.88
, pp. 163106
-
-
Cançado, L.G.1
-
30
-
-
33746763767
-
-
10.1016/j.cplett.2006.05.107
-
K. Sato, Chem. Phys. Lett. 427, 117 (2006). 10.1016/j.cplett.2006.05.107
-
(2006)
Chem. Phys. Lett.
, vol.427
, pp. 117
-
-
Sato, K.1
-
31
-
-
77957555609
-
-
Multiple Lorentzian peaks near 1250, 1350, and 1450cm-1 were fitted to the experimental data to determine the peak height.
-
Multiple Lorentzian peaks near 1250, 1350, and 1450 cm - 1 were fitted to the experimental data to determine the peak height.
-
-
-
-
35
-
-
77957601888
-
-
Previous calculations using resonant scatterers with infinite on-site energy yield a resistivity exponent less or equal to -1.
-
Previous calculations using resonant scatterers with infinite on-site energy yield a resistivity exponent less or equal to - 1.
-
-
-
-
36
-
-
77957599007
-
-
μ= 1 cg dσ d Vg where μ is field-effect mobility and cg is capacitance per unit area, was used to calculate the gate-dependent mobility.
-
μ = 1 c g d σ d V g where μ is field-effect mobility and c g is capacitance per unit area, was used to calculate the gate-dependent mobility.
-
-
-
-
37
-
-
40749140712
-
-
10.1103/PhysRevLett.100.016602
-
S. V. Morozov, Phys. Rev. Lett. 100, 016602 (2008). 10.1103/PhysRevLett. 100.016602
-
(2008)
Phys. Rev. Lett.
, vol.100
, pp. 016602
-
-
Morozov, S.V.1
-
38
-
-
37249020423
-
-
10.1103/PhysRevLett.99.246803
-
Y. W. Tan, Phys. Rev. Lett. 99, 246803 (2007). 10.1103/PhysRevLett.99. 246803
-
(2007)
Phys. Rev. Lett.
, vol.99
, pp. 246803
-
-
Tan, Y.W.1
-
39
-
-
0037044983
-
-
10.1063/1.1511729
-
T. Zecho, J. Chem. Phys. 117, 8486 (2002). 10.1063/1.1511729
-
(2002)
J. Chem. Phys.
, vol.117
, pp. 8486
-
-
Zecho, T.1
-
42
-
-
77957606919
-
-
arXiv:1004.5384.v1 (unpublished).
-
V. M. Pereira, arXiv:1004.5384. v1 (unpublished).
-
-
-
Pereira, V.M.1
-
44
-
-
33750459007
-
-
10.1103/PhysRevLett.97.187401
-
A. C. Ferrari, Phys. Rev. Lett. 97, 187401 (2006). 10.1103/PhysRevLett. 97.187401
-
(2006)
Phys. Rev. Lett.
, vol.97
, pp. 187401
-
-
Ferrari, A.C.1
-
45
-
-
34547310313
-
-
10.1021/nl070613a
-
M. Ishigami, Nano Lett. 7, 1643 (2007). 10.1021/nl070613a
-
(2007)
Nano Lett.
, vol.7
, pp. 1643
-
-
Ishigami, M.1
-
46
-
-
77955120770
-
-
10.1103/PhysRevLett.105.056802
-
T. O. Wehling, Phys. Rev. Lett. 105, 056802 (2010). 10.1103/PhysRevLett. 105.056802
-
(2010)
Phys. Rev. Lett.
, vol.105
, pp. 056802
-
-
Wehling, T.O.1
|