메뉴 건너뛰기




Volumn 32, Issue 3, 2010, Pages 619-648

Overlaying Classifiers: A Practical Approach to Optimal Scoring

Author keywords

AUC criterion; Bipartite ranking; Density level set; Minimum volume set estimation; Piecewise linear approximation; ROC curve; Scoring function; Statistical learning; Sup norm

Indexed keywords


EID: 77957300985     PISSN: 01764276     EISSN: 14320940     Source Type: Journal    
DOI: 10.1007/s00365-010-9084-9     Document Type: Article
Times cited : (35)

References (35)
  • 2
    • 34547706430 scopus 로고    scopus 로고
    • Fast learning rates for plug-in classifiers
    • Audibert, J.-Y., Tsybakov, A.: Fast learning rates for plug-in classifiers. Ann. Stat. 35(2), 608-633 (2007).
    • (2007) Ann. Stat. , vol.35 , Issue.2 , pp. 608-633
    • Audibert, J.-Y.1    Tsybakov, A.2
  • 3
    • 33747350759 scopus 로고    scopus 로고
    • Considering cost asymmetry in learning classifiers
    • Bach, F. R., Heckerman, D., Horvitz, E.: Considering cost asymmetry in learning classifiers. J. Mach. Learn. Res. 7, 1713-1741 (2006).
    • (2006) J. Mach. Learn. Res. , vol.7 , pp. 1713-1741
    • Bach, F.R.1    Heckerman, D.2    Horvitz, E.3
  • 4
    • 77957307861 scopus 로고    scopus 로고
    • Barreno, M., Cardenas, A. A., Tygar, J. D.: Optimal ROC curve for a combination of classifiers. In: NIPS'07 (2007).
  • 5
    • 84924053271 scopus 로고    scopus 로고
    • Theory of classification: A survey of some recent advances
    • Boucheron, S., Bousquet, O., Lugosi, G.: Theory of classification: a survey of some recent advances. ESAIM: Probab. Stat. 9, 323-375 (2005).
    • (2005) ESAIM: Probab. Stat. , vol.9 , pp. 323-375
    • Boucheron, S.1    Bousquet, O.2    Lugosi, G.3
  • 6
    • 0031502338 scopus 로고    scopus 로고
    • Nonparametric estimation of regression level sets
    • Cavalier, L.: Nonparametric estimation of regression level sets. Statistics 29, 131-160 (1997).
    • (1997) Statistics , vol.29 , pp. 131-160
    • Cavalier, L.1
  • 7
    • 26944450515 scopus 로고    scopus 로고
    • Ranking and scoring using empirical risk minimization
    • Lecture Notes in Computer Science, P. Auer and R. Meir (Eds.), Berlin: Springer
    • Clémençon, S., Lugosi, G., Vayatis, N.: Ranking and scoring using empirical risk minimization. In: Auer, P., Meir, R. (eds.) Proceedings of COLT 2005. Lecture Notes in Computer Science, vol. 3559, pp. 1-15. Springer, Berlin (2005).
    • (2005) Proceedings of COLT 2005 , vol.3559 , pp. 1-15
    • Clémençon, S.1    Lugosi, G.2    Vayatis, N.3
  • 8
    • 51049098491 scopus 로고    scopus 로고
    • Ranking and empirical risk minimization of U-statistics
    • Clémençon, S., Lugosi, G., Vayatis, N.: Ranking and empirical risk minimization of U-statistics. Ann. Stat. 36(2), 844-874 (2008).
    • (2008) Ann. Stat. , vol.36 , Issue.2 , pp. 844-874
    • Clémençon, S.1    Lugosi, G.2    Vayatis, N.3
  • 10
    • 77957325531 scopus 로고    scopus 로고
    • Clémençon, S., Vayatis, N.: Approximation of the optimal ROC curve and a tree-based ranking algorithm. In: Proceedings of ALT'08 (2008).
  • 11
    • 85161998683 scopus 로고    scopus 로고
    • Clémençon, S., Vayatis, N.: Empirical performance maximization for linear rank statistics. In: Koller, D., Schuurmans, D., Bengio, Y., Bottou, L. (eds.) Advances in Neural Information Processing Systems 21. Proceedings of NIPS'08, pp. 305-312 (2009).
  • 12
    • 70049115403 scopus 로고    scopus 로고
    • Clémençon, S., Vayatis, N.: Nonparametric estimation of the precision-recall curve. In: Proceedings of the 26th International Conference on Machine Learning, ICML (2009).
  • 13
    • 84862291211 scopus 로고    scopus 로고
    • Clémençon, S., Vayatis, N.: On partitioning rules for bipartite ranking. In: Koller, D., Schuurmans, D., Bengio, Y., Bottou, L. (eds.) Proceedings of the Twelfth International Conference on Artificial Intelligence and Statistics (AISTATS), JMLR: W& CP 5, pp. 97-104 (2009).
  • 15
    • 84897965802 scopus 로고    scopus 로고
    • AUC optimization vs. error rate minimization
    • S. Thrun, L. Saul, B. Schölkopf (Eds.), Cambridge: MIT Press
    • Cortes, C., Mohri, M.: AUC optimization vs. error rate minimization. In: Thrun, S., Saul, L., Schölkopf, B. (eds.) Advances in Neural Information Processing Systems, vol. 16. MIT Press, Cambridge (2004).
    • (2004) Advances in Neural Information Processing Systems , vol.16
    • Cortes, C.1    Mohri, M.2
  • 22
    • 0020083498 scopus 로고
    • The meaning and use of the area under a ROC curve
    • Hanley, J. A., McNeil, J.: The meaning and use of the area under a ROC curve. Radiology 143, 29-36 (1982).
    • (1982) Radiology , vol.143 , pp. 29-36
    • Hanley, J.A.1    McNeil, J.2
  • 23
    • 77957312423 scopus 로고    scopus 로고
    • Rakotomamonjy, A.: Optimizing area under ROC curve with svms. In: Proceedings of the First Workshop on ROC Analysis in AI (2004).
  • 24
    • 77957292854 scopus 로고    scopus 로고
    • Rigollet, P., Vert, R.: Fast rates for plug-in estimators of density level sets. Technical Report (2006). arXiv: math/0611473v2.
  • 25
    • 33746049784 scopus 로고    scopus 로고
    • Ranking with a P-norm push
    • Lecture Notes in Computer Science, H. U. Simon and G. Lugosi (Eds.), Berlin: Springer
    • Rudin, C.: Ranking with a P-norm push. In: Simon, H. U., Lugosi, G. (eds.) Proceedings of COLT 2006. Lecture Notes in Computer Science, vol. 4005, pp. 589-604. Springer, Berlin (2006).
    • (2006) Proceedings of COLT 2006 , vol.4005 , pp. 589-604
    • Rudin, C.1
  • 26
    • 77957304005 scopus 로고    scopus 로고
    • Scott, C.: Performance measures for Neyman-Pearson classification. Technical report, Department of Statistics, Rice University (2005).
  • 27
    • 77957301318 scopus 로고    scopus 로고
    • Scott, C., Bellala, G., Willett, R.: Generalization error analysis for FDR controlled classification. Technical report, Department of Electrical Engineering and Computer Science, University of Michigan (2008).
  • 28
    • 27744553952 scopus 로고    scopus 로고
    • A Neyman-Pearson approach to statistical learning
    • Scott, C., Nowak, R.: A Neyman-Pearson approach to statistical learning. IEEE Trans. Inf. Theory 51(11), 3806-3819 (2005).
    • (2005) IEEE Trans. Inf. Theory , vol.51 , Issue.11 , pp. 3806-3819
    • Scott, C.1    Nowak, R.2
  • 29
    • 33646350762 scopus 로고    scopus 로고
    • Learning minimum volume sets
    • Scott, C., Nowak, R.: Learning minimum volume sets. J. Mach. Learn. Res. 7, 665-704 (2006).
    • (2006) J. Mach. Learn. Res. , vol.7 , pp. 665-704
    • Scott, C.1    Nowak, R.2
  • 30
    • 0031478562 scopus 로고    scopus 로고
    • On nonparametric estimation of density level sets
    • Tsybakov, A.: On nonparametric estimation of density level sets. Ann. Stat. 25(3), 948-969 (1997).
    • (1997) Ann. Stat. , vol.25 , Issue.3 , pp. 948-969
    • Tsybakov, A.1
  • 31
    • 3142725508 scopus 로고    scopus 로고
    • Optimal aggregation of classifiers in statistical learning
    • Tsybakov, A.: Optimal aggregation of classifiers in statistical learning. Ann. Stat. 32(1), 135-166 (2004).
    • (2004) Ann. Stat. , vol.32 , Issue.1 , pp. 135-166
    • Tsybakov, A.1
  • 32
    • 77957309464 scopus 로고    scopus 로고
    • Usunier, N., Amini, M., Gallinari, P.: A data-dependent generalisation error bound for the AUC. In: ROCML ICML 2005 Workshop (2005).
  • 34
    • 36749005028 scopus 로고    scopus 로고
    • Minimax optimal level set estimation
    • Willett, R., Nowak, R.: Minimax optimal level set estimation. IEEE Trans. Image Process. 16(12), 2965-2979 (2007).
    • (2007) IEEE Trans. Image Process. , vol.16 , Issue.12 , pp. 2965-2979
    • Willett, R.1    Nowak, R.2
  • 35
    • 1942451946 scopus 로고    scopus 로고
    • Yan, L., Dodier, R. H., Mozer, M., Wolniewicz, R. H.: Optimizing classifier performance via an approximation to the Wilcoxon-Mann-Whitney statistic. In: Fawcett, T., Mishra, N. (eds.) Proceedings of the Twentieth International Conference on Machine Learning (ICML 2003), pp. 848-855 (2003).


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.