메뉴 건너뛰기




Volumn 3559 LNAI, Issue , 2005, Pages 1-15

Ranking and scoring using empirical risk minimization

Author keywords

[No Author keywords available]

Indexed keywords

DATABASE SYSTEMS; LEARNING SYSTEMS; RISK ASSESSMENT; STATISTICAL METHODS;

EID: 26944450515     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/11503415_1     Document Type: Conference Paper
Times cited : (48)

References (23)
  • 3
    • 0040571792 scopus 로고
    • U-processes indexed by Vapnik-Chervonenkis classes of functions with applications to asymptotics and bootstrap of U-statistics with estimated parameters
    • M.A. Arcones and E. Giné (1994). U-processes indexed by Vapnik-Chervonenkis classes of functions with applications to asymptotics and bootstrap of U-statistics with estimated parameters. Stochastic Processes and their Applications, 52, pp. 17-38.
    • (1994) Stochastic Processes and Their Applications , vol.52 , pp. 17-38
    • Arcones, M.A.1    Giné, E.2
  • 4
    • 1542367492 scopus 로고    scopus 로고
    • Convexity, classification, and risk bounds
    • Department of Statistics, U.C. Berkeley
    • P.L. Bartlett, M.I. Jordan, and J.D. McAuliffe (2003). Convexity, classification, and risk bounds. Technical Report 638, Department of Statistics, U.C. Berkeley.
    • (2003) Technical Report , vol.638
    • Bartlett, P.L.1    Jordan, M.I.2    McAuliffe, J.D.3
  • 5
    • 9444257146 scopus 로고    scopus 로고
    • Empirical minimization
    • Department of Statistics, U.C. Berkeley
    • P.L. Bartlett and S. Mendelson (2003). Empirical minimization. Technical Report, Department of Statistics, U.C. Berkeley.
    • (2003) Technical Report
    • Bartlett, P.L.1    Mendelson, S.2
  • 8
    • 14644395930 scopus 로고    scopus 로고
    • Population theory for boosting ensembles
    • L. Breiman (2004). Population theory for boosting ensembles. Annals of Statistics, 32, pp. 1-11.
    • (2004) Annals of Statistics , vol.32 , pp. 1-11
    • Breiman, L.1
  • 12
    • 0000996139 scopus 로고
    • Sphere packing numbers for subsets of the boolean n-cube with bounded Vapnik-Chervonenkis dimension
    • D. Haussler (1995). Sphere packing numbers for subsets of the boolean n-cube with bounded Vapnik-Chervonenkis dimension. Journal of Combinatorial Theory, Series A, 69, pp. 217-232.
    • (1995) Journal of Combinatorial Theory, Series A , vol.69 , pp. 217-232
    • Haussler, D.1
  • 13
    • 0008371352 scopus 로고    scopus 로고
    • Large margin rank boundaries for ordinal regression
    • A. Smola, P.L. Bartlett, B.Schölkopf, and D.Schuurmans (eds.), The MIT Press
    • R. Herbrich, T. Graepel, and K. Obermayer (2000). Large margin rank boundaries for ordinal regression. In A. Smola, P.L. Bartlett, B.Schölkopf, and D.Schuurmans (eds.), Advances in Large Margin Classifiers, The MIT Press, pp. 115-132.
    • (2000) Advances in Large Margin Classifiers , pp. 115-132
    • Herbrich, R.1    Graepel, T.2    Obermayer, K.3
  • 14
    • 84947403595 scopus 로고
    • Probability inequalities for sums of bounded random variables
    • W. Hoeffding (1963). Probability inequalities for sums of bounded random variables. Journal of the American Statistical Association, 58, pp. 13-30.
    • (1963) Journal of the American Statistical Association , vol.58 , pp. 13-30
    • Hoeffding, W.1
  • 15
    • 26444545593 scopus 로고    scopus 로고
    • Process consistency for Adaboost
    • W. Jiang (2004). Process consistency for Adaboost (with discussion). Annals of Statistics, 32, pp. 13-29.
    • (2004) Annals of Statistics , vol.32 , pp. 13-29
    • Jiang, W.1
  • 16
    • 0036104545 scopus 로고    scopus 로고
    • Empirical margin distribution and bounding the generalization error of combined classifiers
    • V. Koltchinskii and D. Panchenko (2002). Empirical margin distribution and bounding the generalization error of combined classifiers. Annals of Statistics, 30, pp. 1-50.
    • (2002) Annals of Statistics , vol.30 , pp. 1-50
    • Koltchinskii, V.1    Panchenko, D.2
  • 17
    • 0005375288 scopus 로고    scopus 로고
    • Pattern classification and learning theory
    • L. Györfi (editor), Springer, Wien, New York
    • G. Lugosi (2002). Pattern classification and learning theory. In L. Györfi (editor), Principles of Nonparametric Learning, Springer, Wien, New York, pp. 1-56.
    • (2002) Principles of Nonparametric Learning , pp. 1-56
    • Lugosi, G.1
  • 18
    • 9444269961 scopus 로고    scopus 로고
    • On the Bayes-risk consistency of boosting methods
    • G. Lugosi and N. Vayatis (2004). On the Bayes-risk consistency of boosting methods (with discussion). Annals of Statistics, 32, pp. 30-55.
    • (2004) Annals of Statistics , vol.32 , pp. 30-55
    • Lugosi, G.1    Vayatis, N.2
  • 20
    • 0001035413 scopus 로고
    • On the method of bounded differences
    • Cambridge University Press
    • C. McDiarmid (1989). On the method of bounded differences. In Surveys in Combinatorics 1989, pp. 148-188, Cambridge University Press.
    • (1989) Surveys in Combinatorics 1989 , pp. 148-188
    • McDiarmid, C.1
  • 22
    • 3142725508 scopus 로고    scopus 로고
    • Optimal aggregation of classifiers in statistical learning
    • A. Tsybakov (2004). Optimal aggregation of classifiers in statistical learning. Annals of Statistics, 32, pp. 135-166.
    • (2004) Annals of Statistics , vol.32 , pp. 135-166
    • Tsybakov, A.1
  • 23
    • 4644257995 scopus 로고    scopus 로고
    • Statistical behavior and consistency of classification methods based on convex risk minimization
    • T. Zhang (2004). Statistical behavior and consistency of classification methods based on convex risk minimization (with discussion). Annals of Statistics, 32, pp. 56-85.
    • (2004) Annals of Statistics , vol.32 , pp. 56-85
    • Zhang, T.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.