-
3
-
-
0031208638
-
Learning distributions by their density levels: A paradigm for learning without a teacher
-
S. Ben-David and M. Lindenbaum. Learning distributions by their density levels: a paradigm for learning without a teacher. J. Comp. Sys. Sci., 55:171-182, 1997.
-
(1997)
J. Comp. Sys. Sci.
, vol.55
, pp. 171-182
-
-
Ben-David, S.1
Lindenbaum, M.2
-
4
-
-
9444269346
-
Oracle bounds and exact algorithm for dyadic classification trees
-
J. Shawe-Taylor and Y. Singer, editors, Springer-Verlag, Heidelberg
-
G. Blanchard, C. Schäfer, and Y. Rozenholc. Oracle bounds and exact algorithm for dyadic classification trees. In J. Shawe-Taylor and Y. Singer, editors, Learning Theory: 17th Annual Conference on Learning Theory, COLT 2004, pages 378-392. Springer-Verlag, Heidelberg, 2004.
-
(2004)
Learning Theory: 17th Annual Conference on Learning Theory, COLT 2004
, pp. 378-392
-
-
Blanchard, G.1
Schäfer, C.2
Rozenholc, Y.3
-
5
-
-
33846313242
-
Introduction to statistical learning theory
-
O. Bousquet, U.v. Luxburg, and G. Rtsch, editors, Springer
-
O. Bousquet, S. Boucheron, and G. Lugosi. Introduction to statistical learning theory. In O. Bousquet, U.v. Luxburg, and G. Rtsch, editors, Advanced Lectures in Machine Learning, pages 169-207. Springer, 2004.
-
(2004)
Advanced Lectures in Machine Learning
, pp. 169-207
-
-
Bousquet, O.1
Boucheron, S.2
Lugosi, G.3
-
6
-
-
0003802343
-
-
Wadsworth, Belmont, CA
-
L. Breiman, J. Friedman, R. Olshen, and C. Stone. Classification and Regression Trees. Wadsworth, Belmont, CA, 1984.
-
(1984)
Classification and Regression Trees
-
-
Breiman, L.1
Friedman, J.2
Olshen, R.3
Stone, C.4
-
7
-
-
27744586991
-
Learning with the Neyman-Pearson and min-max criteria
-
Los Alamos National Laboratory
-
A. Cannon, J. Howse, D. Hush, and C. Scovel. Learning with the Neyman-Pearson and min-max criteria. Technical Report LA-UR 02-2951, Los Alamos National Laboratory, 2002. URL http: //www.c3.lanl.gov/~kelly/ml/pubs/ 2002_minmax/paper.pdf.
-
(2002)
Technical Report
, vol.LA-UR 02-2951
-
-
Cannon, A.1
Howse, J.2
Hush, D.3
Scovel, C.4
-
8
-
-
0035447035
-
Tree approximation and optimal encoding
-
A. Cohen, W. Dahmen, I. Daubechies, and R. A. DeVore. Tree approximation and optimal encoding. Applied and Computational Harmonic Analysis, 11(2):192-226, 2001.
-
(2001)
Applied and Computational Harmonic Analysis
, vol.11
, Issue.2
, pp. 192-226
-
-
Cohen, A.1
Dahmen, W.2
Daubechies, I.3
DeVore, R.A.4
-
10
-
-
0031329212
-
A plug-in approach to support estimation
-
A. Cuevas and R. Fraiman. A plug-in approach to support estimation. Ann. Stat., 25:2300-2312, 1997.
-
(1997)
Ann. Stat.
, vol.25
, pp. 2300-2312
-
-
Cuevas, A.1
Fraiman, R.2
-
12
-
-
85009724776
-
Nonlinear approximation
-
R. A. DeVore. Nonlinear approximation. Acta Numerica, 7:51-150, 1998.
-
(1998)
Acta Numerica
, vol.7
, pp. 51-150
-
-
DeVore, R.A.1
-
14
-
-
0033248623
-
Wedgelets: Nearly minimax estimation of edges
-
D. Donoho. Wedgelets: Nearly minimax estimation of edges. Ann. Stat., 27:859-897, 1999.
-
(1999)
Ann. Stat.
, vol.27
, pp. 859-897
-
-
Donoho, D.1
-
16
-
-
0001341972
-
Estimation of a convex density contour in two dimensions
-
J. Hartigan. Estimation of a convex density contour in two dimensions. J. Amer. Statist. Assoc., 82 (397):267-270, 1987.
-
(1987)
J. Amer. Statist. Assoc.
, vol.82
, Issue.397
, pp. 267-270
-
-
Hartigan, J.1
-
17
-
-
2142811065
-
A network flow approach in finding maximum likelihood estimate of high concentration regions
-
X. Huo and J. Lu. A network flow approach in finding maximum likelihood estimate of high concentration regions. Computational Statistics and Data Analysis, 46(1):33-56, 2004.
-
(2004)
Computational Statistics and Data Analysis
, vol.46
, Issue.1
, pp. 33-56
-
-
Huo, X.1
Lu, J.2
-
18
-
-
0346961497
-
Complexity penalized support estimation
-
J. Klemelä. Complexity penalized support estimation. J. Multivariate Anal., 88:274-297, 2004.
-
(2004)
J. Multivariate Anal.
, vol.88
, pp. 274-297
-
-
Klemelä, J.1
-
19
-
-
0035397715
-
Rademacher penalties and structural risk minimization
-
V. Koltchinskii. Rademacher penalties and structural risk minimization. IEEE Trans. Inform. Theory, 47:1902-1914, 2001.
-
(2001)
IEEE Trans. Inform. Theory
, vol.47
, pp. 1902-1914
-
-
Koltchinskii, V.1
-
20
-
-
21844462365
-
Tutorial on practical prediction theory for classification
-
J. Langford. Tutorial on practical prediction theory for classification. J. Machine Learning Research, 6:273-306, 2005.
-
(2005)
J. Machine Learning Research
, vol.6
, pp. 273-306
-
-
Langford, J.1
-
22
-
-
0029754587
-
Concept learning using complexity regularization
-
G. Lugosi and K. Zeger. Concept learning using complexity regularization. IEEE Trans. Inform. Theory, 42(1):48-54, 1996.
-
(1996)
IEEE Trans. Inform. Theory
, vol.42
, Issue.1
, pp. 48-54
-
-
Lugosi, G.1
Zeger, K.2
-
23
-
-
0029307575
-
Nonparametric estimation using empirical risk minimization
-
G. Lugosi and K. Zeger. Nonparametric estimation using empirical risk minimization. IEEE Trans. Inform. Theory, 41(3):677-687, 1995.
-
(1995)
IEEE Trans. Inform. Theory
, vol.41
, Issue.3
, pp. 677-687
-
-
Lugosi, G.1
Zeger, K.2
-
24
-
-
0000371878
-
Excess mass estimates and tests for multimodality
-
D. Müller and G Sawitzki. Excess mass estimates and tests for multimodality. J. Amer. Statist. Assoc., 86(415):738-746, 1991.
-
(1991)
J. Amer. Statist. Assoc.
, vol.86
, Issue.415
, pp. 738-746
-
-
Müller, D.1
Sawitzki, G.2
-
25
-
-
31544483334
-
Estimation of high-density regions using one-class neighbor machines
-
A. Muñoz and J. M. Moguerza. Estimation of high-density regions using one-class neighbor machines. IEEE Trans. Patt. Anal. Mach. Intell., 28:476-480, 2006.
-
(2006)
IEEE Trans. Patt. Anal. Mach. Intell.
, vol.28
, pp. 476-480
-
-
Muñoz, A.1
Moguerza, J.M.2
-
26
-
-
0001642186
-
The excess mass ellipsoid
-
D. Nolan. The excess mass ellipsoid. J. Multivariate Analysis, 39:348-371, 1991.
-
(1991)
J. Multivariate Analysis
, vol.39
, pp. 348-371
-
-
Nolan, D.1
-
27
-
-
0042890469
-
Level sets and minimum volume sets of probability density functions
-
Sept.
-
J. Nunez-Garcia, Z. Kutalik, K.-H.Cho, and O. Wolkenhauer. Level sets and minimum volume sets of probability density functions. Approximate Reasoning, 34:25-47, Sept. 2003.
-
(2003)
Approximate Reasoning
, vol.34
, pp. 25-47
-
-
Nunez-Garcia, J.1
Kutalik, Z.2
Cho, K.-H.3
Wolkenhauer, O.4
-
28
-
-
0001030653
-
Measuring mass concentrations and estimating density contour cluster-an excess mass approach
-
W. Polonik. Measuring mass concentrations and estimating density contour cluster-an excess mass approach. Ann. Stat., 23(3):855-881, 1995.
-
(1995)
Ann. Stat.
, vol.23
, Issue.3
, pp. 855-881
-
-
Polonik, W.1
-
29
-
-
0031592717
-
Minimum volume sets and generalized quantile processes
-
W. Polonik. Minimum volume sets and generalized quantile processes. Stochastic Processes and their Applications, 69:1-24, 1997.
-
(1997)
Stochastic Processes and Their Applications
, vol.69
, pp. 1-24
-
-
Polonik, W.1
-
30
-
-
85144895276
-
An iterative method for estimating a multivariate mode and isopleth
-
T. W. Sager. An iterative method for estimating a multivariate mode and isopleth. J. Am. Stat. Asso., 74:329-339, 1979.
-
(1979)
J. Am. Stat. Asso.
, vol.74
, pp. 329-339
-
-
Sager, T.W.1
-
31
-
-
0000487102
-
Estimating the support of a high-dimensional distribution
-
B. Schölkopf, J. Platt, J. Shawe-Taylor, A. Smola, and R. Williamson. Estimating the support of a high-dimensional distribution. Neural Computation, 13(7):1443-1472, 2001.
-
(2001)
Neural Computation
, vol.13
, Issue.7
, pp. 1443-1472
-
-
Schölkopf, B.1
Platt, J.2
Shawe-Taylor, J.3
Smola, A.4
Williamson, R.5
-
32
-
-
33646367811
-
Learning minimum volume sets
-
UW-Madison
-
C. Scott and R. Nowak. Learning minimum volume sets. Technical Report ECE-05-2, UW-Madison, 2005a. URL http://www.stat.rice.edu/~cscott.
-
(2005)
Technical Report
, vol.ECE-05-2
-
-
Scott, C.1
Nowak, R.2
-
33
-
-
27744553952
-
A Neyman-Pearson approach to statistical learning
-
C. Scott and R. Nowak. A Neyman-Pearson approach to statistical learning. IEEE Trans. Inform. Theory, 51(8):3806-3819, 2005b.
-
(2005)
IEEE Trans. Inform. Theory
, vol.51
, Issue.8
, pp. 3806-3819
-
-
Scott, C.1
Nowak, R.2
-
34
-
-
33645724205
-
Minimax-optimal classification with dyadic decision trees
-
April
-
C. Scott and R. Nowak. Minimax-optimal classification with dyadic decision trees. IEEE Trans. Inform. Theory, pages 1335-1353, April 2006.
-
(2006)
IEEE Trans. Inform. Theory
, pp. 1335-1353
-
-
Scott, C.1
Nowak, R.2
-
36
-
-
0031478562
-
On nonparametric estimation of density level sets
-
A. B. Tsybakov. On nonparametric estimation of density level sets. Ann. Stat., 25:948-969, 1997.
-
(1997)
Ann. Stat.
, vol.25
, pp. 948-969
-
-
Tsybakov, A.B.1
-
39
-
-
32544452547
-
Consistency and convergence rates of one-class SVM and related algorithms
-
Universit Paris-Sud
-
R. Vert and J.-P. Vert. Consistency and convergence rates of one-class SVM and related algorithms. Technical Report 1414, Universit Paris-Sud, 2005.
-
(2005)
Technical Report
, vol.1414
-
-
Vert, R.1
Vert, J.-P.2
-
40
-
-
0031316270
-
Granulometric smoothing
-
G. Walther. Granulometric smoothing. Ann. Stat., 25:2273-2299, 1997.
-
(1997)
Ann. Stat.
, vol.25
, pp. 2273-2299
-
-
Walther, G.1
-
41
-
-
33646382278
-
Minimax optimal level set estimation
-
submitted to
-
R. Willett and R. Nowak. Minimax optimal level set estimation. submitted to IEEE Trans. Image Proc., 2006. URL http://www.ee.duke.edu/~willett/.
-
(2006)
IEEE Trans. Image Proc.
-
-
Willett, R.1
Nowak, R.2
-
42
-
-
30844435040
-
Minimax optimal level set estimation
-
31 July - 4 August, San Diego, CA, USA
-
R. Willett and R. Nowak. Minimax optimal level set estimation. In Proc. SPIE, Wavelets XI, 31 July - 4 August, San Diego, CA, USA, 2005.
-
(2005)
Proc. SPIE, Wavelets XI
-
-
Willett, R.1
Nowak, R.2
|