메뉴 건너뛰기




Volumn 21, Issue 10, 2010, Pages 599-609

The insulin secretory granule as a signaling hub

Author keywords

[No Author keywords available]

Indexed keywords

4 AMINOBUTYRIC ACID; ADENOSINE DIPHOSPHATE; ADENOSINE TRIPHOSPHATE; AMYLIN; C PEPTIDE; CALCIUM CHANNEL; GUANINE NUCLEOTIDE BINDING PROTEIN; INSULIN; ION CHANNEL; MEMBRANE PROTEIN; POLYPEPTIDE; POTASSIUM CHANNEL; PROINSULIN; PROTEIN TYROSINE PHOSPHATASE; PROTEOME; RAB PROTEIN; RAB27A PROTEIN; RAB3A PROTEIN; UNCLASSIFIED DRUG;

EID: 77957235524     PISSN: 10432760     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.tem.2010.06.003     Document Type: Review
Times cited : (149)

References (117)
  • 1
    • 70449494871 scopus 로고    scopus 로고
    • Endoplasmic reticulum stress in beta-cells and development of diabetes
    • Fonseca S.G., et al. Endoplasmic reticulum stress in beta-cells and development of diabetes. Curr. Opin. Pharmacol. 2009, 9:763-770.
    • (2009) Curr. Opin. Pharmacol. , vol.9 , pp. 763-770
    • Fonseca, S.G.1
  • 2
    • 3142592401 scopus 로고    scopus 로고
    • Not just a sink: endosomes in control of signal transduction
    • Miaczynska M., et al. Not just a sink: endosomes in control of signal transduction. Curr. Opin. Cell Biol. 2004, 16:400-406.
    • (2004) Curr. Opin. Cell Biol. , vol.16 , pp. 400-406
    • Miaczynska, M.1
  • 3
    • 52049103091 scopus 로고    scopus 로고
    • Pancreas islets in metabolic signaling-focus on the beta-cell
    • Suckale J., Solimena M. Pancreas islets in metabolic signaling-focus on the beta-cell. Front. Biosci. 2008, 13:7156-7171.
    • (2008) Front. Biosci. , vol.13 , pp. 7156-7171
    • Suckale, J.1    Solimena, M.2
  • 4
    • 0035171545 scopus 로고    scopus 로고
    • Promiscuous gene expression in medullary thymic epithelial cells mirrors the peripheral self
    • Derbinski J., et al. Promiscuous gene expression in medullary thymic epithelial cells mirrors the peripheral self. Nat. Immunol. 2001, 2:1032-1039.
    • (2001) Nat. Immunol. , vol.2 , pp. 1032-1039
    • Derbinski, J.1
  • 5
    • 70349194383 scopus 로고    scopus 로고
    • Thymus-specific deletion of insulin induces autoimmune diabetes
    • Fan Y., et al. Thymus-specific deletion of insulin induces autoimmune diabetes. EMBO J. 2009, 28:2812-2824.
    • (2009) EMBO J. , vol.28 , pp. 2812-2824
    • Fan, Y.1
  • 6
    • 0027398295 scopus 로고
    • Differential expression of the two nonallelic proinsulin genes in the developing mouse embryo
    • Deltour L., et al. Differential expression of the two nonallelic proinsulin genes in the developing mouse embryo. Proc. Natl. Acad. Sci. U. S. A. 1993, 90:527-531.
    • (1993) Proc. Natl. Acad. Sci. U. S. A. , vol.90 , pp. 527-531
    • Deltour, L.1
  • 7
    • 0028310417 scopus 로고
    • Insulin gene expression and insulin synthesis in mammalian neuronal cells
    • Devaskar S.U., et al. Insulin gene expression and insulin synthesis in mammalian neuronal cells. J. Biol. Chem. 1994, 269:8445-8454.
    • (1994) J. Biol. Chem. , vol.269 , pp. 8445-8454
    • Devaskar, S.U.1
  • 8
    • 0037453461 scopus 로고    scopus 로고
    • Axons guided by insulin receptor in Drosophila visual system
    • Song J., et al. Axons guided by insulin receptor in Drosophila visual system. Science 2003, 300:502-505.
    • (2003) Science , vol.300 , pp. 502-505
    • Song, J.1
  • 9
    • 50349083511 scopus 로고    scopus 로고
    • Loss of neuroprotective survival signal in mice lacking insulin receptor gene in rod photoreceptor cells
    • Rajala A., et al. Loss of neuroprotective survival signal in mice lacking insulin receptor gene in rod photoreceptor cells. J. Biol. Chem. 2008, 283:19781-19792.
    • (2008) J. Biol. Chem. , vol.283 , pp. 19781-19792
    • Rajala, A.1
  • 10
    • 1442354887 scopus 로고    scopus 로고
    • Extrapancreatic insulin-producing cells in multiple organs in diabetes
    • Kojima H., et al. Extrapancreatic insulin-producing cells in multiple organs in diabetes. Proc. Natl. Acad. Sci. U. S. A. 2004, 101:2458-2463.
    • (2004) Proc. Natl. Acad. Sci. U. S. A. , vol.101 , pp. 2458-2463
    • Kojima, H.1
  • 11
    • 0039829851 scopus 로고
    • Glucose stimulates proinsulin biosynthesis by a dose-dependent recruitment of pancreatic beta cells
    • Schuit F.C., et al. Glucose stimulates proinsulin biosynthesis by a dose-dependent recruitment of pancreatic beta cells. Proc. Natl. Acad. Sci. U. S. A. 1988, 85:3865-3869.
    • (1988) Proc. Natl. Acad. Sci. U. S. A. , vol.85 , pp. 3865-3869
    • Schuit, F.C.1
  • 12
    • 0015610440 scopus 로고
    • Ultrastructural morphometry of the pancreatic beta-cell
    • Dean P.M. Ultrastructural morphometry of the pancreatic beta-cell. Diabetologia 1973, 9:115-119.
    • (1973) Diabetologia , vol.9 , pp. 115-119
    • Dean, P.M.1
  • 13
    • 9444238518 scopus 로고    scopus 로고
    • Stimulation of insulin release by glucose is associated with an increase in the number of docked granules in the beta-cells of rat pancreatic islets
    • Straub S.G., et al. Stimulation of insulin release by glucose is associated with an increase in the number of docked granules in the beta-cells of rat pancreatic islets. Diabetes 2004, 53:3179-3183.
    • (2004) Diabetes , vol.53 , pp. 3179-3183
    • Straub, S.G.1
  • 14
    • 0021254228 scopus 로고
    • The mechanism of insulin secretion
    • Howell S.L. The mechanism of insulin secretion. Diabetologia 1984, 26:319-327.
    • (1984) Diabetologia , vol.26 , pp. 319-327
    • Howell, S.L.1
  • 15
    • 24744439439 scopus 로고    scopus 로고
    • Zinc-ligand interactions modulate assembly and stability of the insulin hexamer - a review
    • Dunn M.F. Zinc-ligand interactions modulate assembly and stability of the insulin hexamer - a review. Biometals 2005, 18:295-303.
    • (2005) Biometals , vol.18 , pp. 295-303
    • Dunn, M.F.1
  • 16
    • 0015919854 scopus 로고
    • Biological activity of proinsulin and related polypeptides in the fat tissue
    • Yu S.S., Kitbachi A.E. Biological activity of proinsulin and related polypeptides in the fat tissue. J. Biol. Chem. 1973, 248:3753-3761.
    • (1973) J. Biol. Chem. , vol.248 , pp. 3753-3761
    • Yu, S.S.1    Kitbachi, A.E.2
  • 17
    • 0026608746 scopus 로고
    • Biosynthetic human proinsulin. Review of chemistry, in vitro and in vivo receptor binding, animal and human pharmacology studies, and clinical trial experience
    • Galloway J.A., et al. Biosynthetic human proinsulin. Review of chemistry, in vitro and in vivo receptor binding, animal and human pharmacology studies, and clinical trial experience. Diabetes Care 1992, 15:666-692.
    • (1992) Diabetes Care , vol.15 , pp. 666-692
    • Galloway, J.A.1
  • 18
    • 70350280193 scopus 로고    scopus 로고
    • A brief perspective on insulin production
    • Steiner D.F., et al. A brief perspective on insulin production. Diabetes. Obes. Metab. 2009, 11(Suppl 4):189-196.
    • (2009) Diabetes. Obes. Metab. , vol.11 , Issue.SUPPL 4 , pp. 189-196
    • Steiner, D.F.1
  • 19
    • 0023895049 scopus 로고
    • Intraorganellar calcium and pH control proinsulin cleavage in the pancreatic beta cell via two distinct site-specific endopeptidases
    • Davidson H.W., et al. Intraorganellar calcium and pH control proinsulin cleavage in the pancreatic beta cell via two distinct site-specific endopeptidases. Nature 1988, 333:93-96.
    • (1988) Nature , vol.333 , pp. 93-96
    • Davidson, H.W.1
  • 20
    • 34548368589 scopus 로고    scopus 로고
    • Regulated autophagy controls hormone content in secretory-deficient pancreatic endocrine beta-cells
    • Marsh B.J., et al. Regulated autophagy controls hormone content in secretory-deficient pancreatic endocrine beta-cells. Mol. Endocrinol. 2007, 21:2255-2269.
    • (2007) Mol. Endocrinol. , vol.21 , pp. 2255-2269
    • Marsh, B.J.1
  • 21
    • 33644748390 scopus 로고    scopus 로고
    • Pancreatic beta-cells secrete insulin in fast- and slow-release forms
    • Michael D.J., et al. Pancreatic beta-cells secrete insulin in fast- and slow-release forms. Diabetes 2006, 55:600-607.
    • (2006) Diabetes , vol.55 , pp. 600-607
    • Michael, D.J.1
  • 22
    • 0020121342 scopus 로고
    • Differential rates of release of newly synthesized and of stored insulin from pancreatic islets
    • Halban P.A. Differential rates of release of newly synthesized and of stored insulin from pancreatic islets. Endocrinology 1982, 110:1183-1188.
    • (1982) Endocrinology , vol.110 , pp. 1183-1188
    • Halban, P.A.1
  • 23
    • 0019971028 scopus 로고
    • Evidence that glucose " marks" beta cells resulting in preferential release of newly synthesized insulin
    • Gold G., et al. Evidence that glucose " marks" beta cells resulting in preferential release of newly synthesized insulin. Science 1982, 218:56-58.
    • (1982) Science , vol.218 , pp. 56-58
    • Gold, G.1
  • 24
    • 0019955222 scopus 로고
    • Isolation and characterisation of insulin secretory granules from a rat islet cell tumour
    • Hutton J.C., et al. Isolation and characterisation of insulin secretory granules from a rat islet cell tumour. Diabetologia 1982, 23:365-373.
    • (1982) Diabetologia , vol.23 , pp. 365-373
    • Hutton, J.C.1
  • 25
    • 60849132750 scopus 로고    scopus 로고
    • Proteins associated with immunopurified granules from a model pancreatic islet beta-cell system: proteomic snapshot of an endocrine secretory granule
    • Hickey A.J.R., et al. Proteins associated with immunopurified granules from a model pancreatic islet beta-cell system: proteomic snapshot of an endocrine secretory granule. J. Proteome Res. 2009, 8:178-186.
    • (2009) J. Proteome Res. , vol.8 , pp. 178-186
    • Hickey, A.J.R.1
  • 26
    • 34347373451 scopus 로고    scopus 로고
    • Proteomics analysis of insulin secretory granules
    • Brunner Y., et al. Proteomics analysis of insulin secretory granules. Mol. Cell Proteomics 2007, 6:1007-1017.
    • (2007) Mol. Cell Proteomics , vol.6 , pp. 1007-1017
    • Brunner, Y.1
  • 27
    • 57449099865 scopus 로고    scopus 로고
    • MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification
    • Cox J., Mann M. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat. Biotechnol. 2008, 26:1367-1372.
    • (2008) Nat. Biotechnol. , vol.26 , pp. 1367-1372
    • Cox, J.1    Mann, M.2
  • 28
    • 0035856949 scopus 로고    scopus 로고
    • Insulin signalling and the regulation of glucose and lipid metabolism
    • Saltiel A.R., Kahn C.R. Insulin signalling and the regulation of glucose and lipid metabolism. Nature 2001, 414:799-806.
    • (2001) Nature , vol.414 , pp. 799-806
    • Saltiel, A.R.1    Kahn, C.R.2
  • 29
    • 56749184290 scopus 로고    scopus 로고
    • Insulin and insulin-like growth factor signalling in neoplasia
    • Pollak M. Insulin and insulin-like growth factor signalling in neoplasia. Nat. Rev. Cancer 2008, 8:915-928.
    • (2008) Nat. Rev. Cancer , vol.8 , pp. 915-928
    • Pollak, M.1
  • 30
    • 36549003525 scopus 로고    scopus 로고
    • Insulin and ghrelin: peripheral hormones modulating memory and hippocampal function
    • McNay E.C. Insulin and ghrelin: peripheral hormones modulating memory and hippocampal function. Curr. Opin. Pharmacol. 2007, 7:628-632.
    • (2007) Curr. Opin. Pharmacol. , vol.7 , pp. 628-632
    • McNay, E.C.1
  • 31
    • 50949088540 scopus 로고    scopus 로고
    • Insulin signaling in the pancreatic beta-cell
    • Leibiger I.B., et al. Insulin signaling in the pancreatic beta-cell. Annu. Rev. Nutr. 2008, 28:233-251.
    • (2008) Annu. Rev. Nutr. , vol.28 , pp. 233-251
    • Leibiger, I.B.1
  • 32
    • 33747169126 scopus 로고    scopus 로고
    • Proinsulin C-peptide elicits disaggregation of insulin resulting in enhanced physiological insulin effects
    • Shafqat J., et al. Proinsulin C-peptide elicits disaggregation of insulin resulting in enhanced physiological insulin effects. Cell Mol. Life Sci. 2006, 63:1805-1811.
    • (2006) Cell Mol. Life Sci. , vol.63 , pp. 1805-1811
    • Shafqat, J.1
  • 33
    • 33947304329 scopus 로고    scopus 로고
    • Effects of C-peptide on isolated human pancreatic islet cells
    • Bugliani M., et al. Effects of C-peptide on isolated human pancreatic islet cells. Diabetes Metab. Res. Rev. 2007, 23:215-219.
    • (2007) Diabetes Metab. Res. Rev. , vol.23 , pp. 215-219
    • Bugliani, M.1
  • 34
    • 15044353837 scopus 로고    scopus 로고
    • C-peptide prevents glomerular hypertrophy and mesangial matrix expansion in diabetic rats
    • Samnegård B., et al. C-peptide prevents glomerular hypertrophy and mesangial matrix expansion in diabetic rats. Nephrol. Dial. Transplant 2005, 20:532-538.
    • (2005) Nephrol. Dial. Transplant , vol.20 , pp. 532-538
    • Samnegård, B.1
  • 35
    • 33845520115 scopus 로고    scopus 로고
    • C-Peptide reverses nociceptive neuropathy in type 1 diabetes
    • Kamiya H., et al. C-Peptide reverses nociceptive neuropathy in type 1 diabetes. Diabetes 2006, 55:3581-3587.
    • (2006) Diabetes , vol.55 , pp. 3581-3587
    • Kamiya, H.1
  • 36
    • 0025262297 scopus 로고
    • Amylin secretion from the rat pancreas and its selective loss after streptozotocin treatment
    • Ogawa A., et al. Amylin secretion from the rat pancreas and its selective loss after streptozotocin treatment. J. Clin. Invest. 1990, 85:973-976.
    • (1990) J. Clin. Invest. , vol.85 , pp. 973-976
    • Ogawa, A.1
  • 37
    • 0037471369 scopus 로고    scopus 로고
    • Islet amyloid polypeptide inhibits glucagon release and exerts a dual action on insulin release from isolated islets
    • Akesson B., et al. Islet amyloid polypeptide inhibits glucagon release and exerts a dual action on insulin release from isolated islets. Regul. Pept. 2003, 111:55-60.
    • (2003) Regul. Pept. , vol.111 , pp. 55-60
    • Akesson, B.1
  • 38
    • 0029913870 scopus 로고    scopus 로고
    • Dose-responses for the slowing of gastric emptying in a rodent model by glucagon-like peptide (7-36) NH2, amylin, cholecystokinin, and other possible regulators of nutrient uptake
    • Young A.A., et al. Dose-responses for the slowing of gastric emptying in a rodent model by glucagon-like peptide (7-36) NH2, amylin, cholecystokinin, and other possible regulators of nutrient uptake. Metabolism 1996, 45:1-3.
    • (1996) Metabolism , vol.45 , pp. 1-3
    • Young, A.A.1
  • 39
    • 0034464840 scopus 로고    scopus 로고
    • Amylin: a novel action in the brain to reduce body weight
    • Rushing P.A., et al. Amylin: a novel action in the brain to reduce body weight. Endocrinology 2000, 141:850-853.
    • (2000) Endocrinology , vol.141 , pp. 850-853
    • Rushing, P.A.1
  • 40
    • 10744220002 scopus 로고    scopus 로고
    • Amylin inhibits bone resorption while the calcitonin receptor controls bone formation in vivo
    • Dacquin R., et al. Amylin inhibits bone resorption while the calcitonin receptor controls bone formation in vivo. J. Cell Biol. 2004, 164:509-514.
    • (2004) J. Cell Biol. , vol.164 , pp. 509-514
    • Dacquin, R.1
  • 41
    • 34547690686 scopus 로고    scopus 로고
    • Endocrine regulation of energy metabolism by the skeleton
    • Lee N.K., et al. Endocrine regulation of energy metabolism by the skeleton. Cell 2007, 130:456-469.
    • (2007) Cell , vol.130 , pp. 456-469
    • Lee, N.K.1
  • 42
    • 44649150510 scopus 로고    scopus 로고
    • Recent insights in islet amyloid polypeptide-induced membrane disruption and its role in beta-cell death in type 2 diabetes mellitus. Exp. Diabetes Res. 2008, DOI: doi:10.1155/2008/421287
    • Khemtémourian, L. et al. (2008) Recent insights in islet amyloid polypeptide-induced membrane disruption and its role in beta-cell death in type 2 diabetes mellitus. Exp. Diabetes Res. 2008, DOI: doi:10.1155/2008/421287.
    • (2008)
    • Khemtémourian, L.1
  • 43
    • 68049136013 scopus 로고    scopus 로고
    • Glucagon-like peptide-1 protects beta-cells against apoptosis by increasing the activity of an IGF-2/IGF-1 receptor autocrine loop
    • Cornu M., et al. Glucagon-like peptide-1 protects beta-cells against apoptosis by increasing the activity of an IGF-2/IGF-1 receptor autocrine loop. Diabetes 2009, 58:1816-1825.
    • (2009) Diabetes , vol.58 , pp. 1816-1825
    • Cornu, M.1
  • 44
    • 77951246517 scopus 로고    scopus 로고
    • Glucagon-like peptide-1 increases beta-cell glucose competence and proliferation by translational induction of insulin-like growth factor-1 receptor expression
    • Cornu M., et al. Glucagon-like peptide-1 increases beta-cell glucose competence and proliferation by translational induction of insulin-like growth factor-1 receptor expression. J. Biol. Chem. 2010, 285:10538-10545.
    • (2010) J. Biol. Chem. , vol.285 , pp. 10538-10545
    • Cornu, M.1
  • 45
    • 0035655635 scopus 로고    scopus 로고
    • Preptin derived from proinsulin-like growth factor II (proIGF-II) is secreted from pancreatic islet beta-cells and enhances insulin secretion
    • Buchanan C.M., et al. Preptin derived from proinsulin-like growth factor II (proIGF-II) is secreted from pancreatic islet beta-cells and enhances insulin secretion. Biochem. J. 2001, 360:431-439.
    • (2001) Biochem. J. , vol.360 , pp. 431-439
    • Buchanan, C.M.1
  • 46
    • 33845975599 scopus 로고    scopus 로고
    • Preptin, another peptide product of the pancreatic beta-cell, is osteogenic in vitro and in vivo
    • Cornish J., et al. Preptin, another peptide product of the pancreatic beta-cell, is osteogenic in vitro and in vivo. Am. J. Physiol. Endocrinol. Metab. 2007, 292:E117-122.
    • (2007) Am. J. Physiol. Endocrinol. Metab. , vol.292
    • Cornish, J.1
  • 47
    • 12644274684 scopus 로고    scopus 로고
    • Insulin secretion is regulated by the glucose-dependent production of islet beta cell macrophage migration inhibitory factor
    • Waeber G., et al. Insulin secretion is regulated by the glucose-dependent production of islet beta cell macrophage migration inhibitory factor. Proc. Natl. Acad. Sci. U. S. A. 1997, 94:4782-4787.
    • (1997) Proc. Natl. Acad. Sci. U. S. A. , vol.94 , pp. 4782-4787
    • Waeber, G.1
  • 48
    • 0037447728 scopus 로고    scopus 로고
    • PACAP is expressed in secretory granules of insulin and glucagon cells in human and rodent pancreas. Evidence for generation of cAMP compartments uncoupled from hormone release in diabetic islets
    • Portela-Gomes G.M., et al. PACAP is expressed in secretory granules of insulin and glucagon cells in human and rodent pancreas. Evidence for generation of cAMP compartments uncoupled from hormone release in diabetic islets. Regul. Pept. 2003, 113:31-39.
    • (2003) Regul. Pept. , vol.113 , pp. 31-39
    • Portela-Gomes, G.M.1
  • 49
    • 0035943417 scopus 로고    scopus 로고
    • Chromogranin A, an " on/off" switch controlling dense-core secretory granule biogenesis
    • Kim T., et al. Chromogranin A, an " on/off" switch controlling dense-core secretory granule biogenesis. Cell 2001, 106:499-509.
    • (2001) Cell , vol.106 , pp. 499-509
    • Kim, T.1
  • 50
    • 33745747578 scopus 로고    scopus 로고
    • Targeted ablation of the chromogranin a (Chga) gene: normal neuroendocrine dense-core secretory granules and increased expression of other granins
    • Hendy G.N., et al. Targeted ablation of the chromogranin a (Chga) gene: normal neuroendocrine dense-core secretory granules and increased expression of other granins. Mol. Endocrinol. 2006, 20:1935-1947.
    • (2006) Mol. Endocrinol. , vol.20 , pp. 1935-1947
    • Hendy, G.N.1
  • 51
    • 56249145096 scopus 로고    scopus 로고
    • The importance of chromogranin A in the development and function of endocrine pancreas
    • Portela-Gomes G.M., et al. The importance of chromogranin A in the development and function of endocrine pancreas. Regul. Pept. 2008, 151:19-25.
    • (2008) Regul. Pept. , vol.151 , pp. 19-25
    • Portela-Gomes, G.M.1
  • 52
    • 77749251923 scopus 로고    scopus 로고
    • Defective secretion of islet hormones in chromogranin-B deficient mice
    • Obermüller S., et al. Defective secretion of islet hormones in chromogranin-B deficient mice. PLoS ONE 2010, 5:e8936.
    • (2010) PLoS ONE , vol.5
    • Obermüller, S.1
  • 53
    • 0032801426 scopus 로고    scopus 로고
    • Prohormone convertase-1 is essential for conversion of chromogranin A to pancreastatin
    • Udupi V., et al. Prohormone convertase-1 is essential for conversion of chromogranin A to pancreastatin. Regul. Pept. 1999, 83:123-127.
    • (1999) Regul. Pept. , vol.83 , pp. 123-127
    • Udupi, V.1
  • 54
    • 0028968096 scopus 로고
    • Processing of secretogranin II by prohormone convertases: importance of PC1 in generation of secretoneurin
    • Hoflehner J., et al. Processing of secretogranin II by prohormone convertases: importance of PC1 in generation of secretoneurin. FEBS Lett. 1995, 360:294-298.
    • (1995) FEBS Lett. , vol.360 , pp. 294-298
    • Hoflehner, J.1
  • 55
    • 34250375675 scopus 로고    scopus 로고
    • Inhibition of insulin secretion by betagranin, an N-terminal chromogranin A fragment
    • Schmid G.M., et al. Inhibition of insulin secretion by betagranin, an N-terminal chromogranin A fragment. J. Biol. Chem. 2007, 282:12717-12724.
    • (2007) J. Biol. Chem. , vol.282 , pp. 12717-12724
    • Schmid, G.M.1
  • 56
    • 0028293982 scopus 로고
    • The post-translational processing of chromogranin A in the pancreatic islet: involvement of the eukaryote subtilisin PC2
    • Arden S.D., et al. The post-translational processing of chromogranin A in the pancreatic islet: involvement of the eukaryote subtilisin PC2. Biochem. J. 1994, 298:521-528.
    • (1994) Biochem. J. , vol.298 , pp. 521-528
    • Arden, S.D.1
  • 57
    • 0023035470 scopus 로고
    • Pancreastatin, a novel pancreatic peptide that inhibits insulin secretion
    • Tatemoto K., et al. Pancreastatin, a novel pancreatic peptide that inhibits insulin secretion. Nature 1986, 324:476-478.
    • (1986) Nature , vol.324 , pp. 476-478
    • Tatemoto, K.1
  • 58
    • 0028290630 scopus 로고
    • Pancreastatin inhibits insulin-stimulated glycogen synthesis but not glycolysis in rat hepatocytes
    • Sánchez-Margalet V., Goberna R. Pancreastatin inhibits insulin-stimulated glycogen synthesis but not glycolysis in rat hepatocytes. Regul. Pept. 1994, 51:215-220.
    • (1994) Regul. Pept. , vol.51 , pp. 215-220
    • Sánchez-Margalet, V.1    Goberna, R.2
  • 59
    • 70350400777 scopus 로고    scopus 로고
    • A novel pathway of insulin sensitivity in chromogranin A null mice: a crucial role for pancreastatin in glucose homeostasis
    • Gayen J.R., et al. A novel pathway of insulin sensitivity in chromogranin A null mice: a crucial role for pancreastatin in glucose homeostasis. J. Biol. Chem. 2009, 284:28498-28509.
    • (2009) J. Biol. Chem. , vol.284 , pp. 28498-28509
    • Gayen, J.R.1
  • 60
    • 4043158548 scopus 로고    scopus 로고
    • The effect of a chromogranin A-derived peptide (CgA4-16) in the writhing nociceptive response induced by acetic acid in rats
    • Ghia J., et al. The effect of a chromogranin A-derived peptide (CgA4-16) in the writhing nociceptive response induced by acetic acid in rats. Life Sci. 2004, 75:1787-1799.
    • (2004) Life Sci. , vol.75 , pp. 1787-1799
    • Ghia, J.1
  • 61
    • 0034646659 scopus 로고    scopus 로고
    • Antibacterial and antifungal activities of vasostatin-1, the N-terminal fragment of chromogranin A
    • Lugardon K., et al. Antibacterial and antifungal activities of vasostatin-1, the N-terminal fragment of chromogranin A. J. Biol. Chem. 2000, 275:10745-10753.
    • (2000) J. Biol. Chem. , vol.275 , pp. 10745-10753
    • Lugardon, K.1
  • 62
    • 33847342070 scopus 로고    scopus 로고
    • Corelease and differential exit via the fusion pore of GABA, serotonin, and ATP from LDCV in rat pancreatic beta cells
    • Braun M., et al. Corelease and differential exit via the fusion pore of GABA, serotonin, and ATP from LDCV in rat pancreatic beta cells. J. Gen. Physiol. 2007, 129:221-231.
    • (2007) J. Gen. Physiol. , vol.129 , pp. 221-231
    • Braun, M.1
  • 63
    • 33847012550 scopus 로고    scopus 로고
    • Glucose-dependent regulation of gamma-aminobutyric acid (GABA A) receptor expression in mouse pancreatic islet alpha-cells
    • Bailey S.J., et al. Glucose-dependent regulation of gamma-aminobutyric acid (GABA A) receptor expression in mouse pancreatic islet alpha-cells. Diabetes 2007, 56:320-327.
    • (2007) Diabetes , vol.56 , pp. 320-327
    • Bailey, S.J.1
  • 64
    • 62649114002 scopus 로고    scopus 로고
    • P2 purinergic signalling in the pancreatic beta-cell: control of insulin secretion and pharmacology
    • Petit P., et al. P2 purinergic signalling in the pancreatic beta-cell: control of insulin secretion and pharmacology. Eur. J. Pharm. Sci. 2009, 37:67-75.
    • (2009) Eur. J. Pharm. Sci. , vol.37 , pp. 67-75
    • Petit, P.1
  • 65
    • 56549115233 scopus 로고    scopus 로고
    • Extracellular ATP and zinc are co-secreted with insulin and activate multiple P2X purinergic receptor channels expressed by islet beta-cells to potentiate insulin secretion
    • Richards-Williams C., et al. Extracellular ATP and zinc are co-secreted with insulin and activate multiple P2X purinergic receptor channels expressed by islet beta-cells to potentiate insulin secretion. Purinergic Signal. 2008, 4:393-405.
    • (2008) Purinergic Signal. , vol.4 , pp. 393-405
    • Richards-Williams, C.1
  • 66
    • 16344393581 scopus 로고    scopus 로고
    • The P2Y(1) receptor is involved in the maintenance of glucose homeostasis and in insulin secretion in mice
    • Léon C., et al. The P2Y(1) receptor is involved in the maintenance of glucose homeostasis and in insulin secretion in mice. Purinergic Signal. 2005, 1:145-151.
    • (2005) Purinergic Signal. , vol.1 , pp. 145-151
    • Léon, C.1
  • 67
    • 0035988049 scopus 로고    scopus 로고
    • Effect of purinergic agonists and antagonists on insulin secretion from INS-1 cells (insulinoma cell line) and rat pancreatic islets
    • Verspohl E.J., et al. Effect of purinergic agonists and antagonists on insulin secretion from INS-1 cells (insulinoma cell line) and rat pancreatic islets. Can. J. Physiol. Pharmacol. 2002, 80:562-568.
    • (2002) Can. J. Physiol. Pharmacol. , vol.80 , pp. 562-568
    • Verspohl, E.J.1
  • 68
    • 0024426559 scopus 로고
    • Membrane and intracellular effects of adenosine in mouse pancreatic beta-cells
    • Bertrand G., et al. Membrane and intracellular effects of adenosine in mouse pancreatic beta-cells. Am. J. Physiol. 1989, 257:E473-478.
    • (1989) Am. J. Physiol. , vol.257
    • Bertrand, G.1
  • 69
    • 70349280000 scopus 로고    scopus 로고
    • Insulin crystallization depends on zinc transporter ZnT8 expression, but is not required for normal glucose homeostasis in mice
    • Lemaire K., et al. Insulin crystallization depends on zinc transporter ZnT8 expression, but is not required for normal glucose homeostasis in mice. Proc. Natl. Acad. Sci. U. S. A. 2009, 106:14872-14877.
    • (2009) Proc. Natl. Acad. Sci. U. S. A. , vol.106 , pp. 14872-14877
    • Lemaire, K.1
  • 70
    • 70349113136 scopus 로고    scopus 로고
    • Insulin storage and glucose homeostasis in mice null for the granule zinc transporter ZnT8 and studies of the type 2 diabetes-associated variants
    • Nicolson T.J., et al. Insulin storage and glucose homeostasis in mice null for the granule zinc transporter ZnT8 and studies of the type 2 diabetes-associated variants. Diabetes 2009, 58:2070-2083.
    • (2009) Diabetes , vol.58 , pp. 2070-2083
    • Nicolson, T.J.1
  • 71
    • 0037385959 scopus 로고    scopus 로고
    • Islet beta-cell secretion determines glucagon release from neighbouring alpha-cells
    • Ishihara H., et al. Islet beta-cell secretion determines glucagon release from neighbouring alpha-cells. Nat. Cell Biol. 2003, 5:330-335.
    • (2003) Nat. Cell Biol. , vol.5 , pp. 330-335
    • Ishihara, H.1
  • 72
    • 77449142262 scopus 로고    scopus 로고
    • ATP-sensitive K+ channel mediates the zinc switch-off signal for glucagon response during glucose deprivation
    • Slucca M., et al. ATP-sensitive K+ channel mediates the zinc switch-off signal for glucagon response during glucose deprivation. Diabetes 2010, 59:128-134.
    • (2010) Diabetes , vol.59 , pp. 128-134
    • Slucca, M.1
  • 73
    • 20044394745 scopus 로고    scopus 로고
    • Glucose or insulin, but not zinc ions, inhibit glucagon secretion from mouse pancreatic alpha-cells
    • Ravier M.A., Rutter G.A. Glucose or insulin, but not zinc ions, inhibit glucagon secretion from mouse pancreatic alpha-cells. Diabetes 2005, 54:1789-1797.
    • (2005) Diabetes , vol.54 , pp. 1789-1797
    • Ravier, M.A.1    Rutter, G.A.2
  • 74
    • 65549099521 scopus 로고    scopus 로고
    • Zinc and diabetes-clinical links and molecular mechanisms
    • Jansen J., et al. Zinc and diabetes-clinical links and molecular mechanisms. J. Nutr. Biochem. 2009, 20:399-417.
    • (2009) J. Nutr. Biochem. , vol.20 , pp. 399-417
    • Jansen, J.1
  • 75
    • 27744572440 scopus 로고    scopus 로고
    • Cytoplasmic transport signal is involved in phogrin targeting and localization to secretory granules
    • Torii S., et al. Cytoplasmic transport signal is involved in phogrin targeting and localization to secretory granules. Traffic 2005, 6:1213-1224.
    • (2005) Traffic , vol.6 , pp. 1213-1224
    • Torii, S.1
  • 76
    • 0036707866 scopus 로고    scopus 로고
    • The lumenal domain of the integral membrane protein phogrin mediates targeting to secretory granules
    • Wasmeier C., et al. The lumenal domain of the integral membrane protein phogrin mediates targeting to secretory granules. Traffic 2002, 3:654-665.
    • (2002) Traffic , vol.3 , pp. 654-665
    • Wasmeier, C.1
  • 77
    • 27844494185 scopus 로고    scopus 로고
    • Interaction between secretogranin III and carboxypeptidase E facilitates prohormone sorting within secretory granules
    • Hosaka M., et al. Interaction between secretogranin III and carboxypeptidase E facilitates prohormone sorting within secretory granules. J. Cell Sci. 2005, 118:4785-4795.
    • (2005) J. Cell Sci. , vol.118 , pp. 4785-4795
    • Hosaka, M.1
  • 78
    • 0037115625 scopus 로고    scopus 로고
    • Identification of a novel sorting determinant for the regulated pathway in the secretory protein chromogranin A
    • Taupenot L., et al. Identification of a novel sorting determinant for the regulated pathway in the secretory protein chromogranin A. J. Cell Sci. 2002, 115:4827-4841.
    • (2002) J. Cell Sci. , vol.115 , pp. 4827-4841
    • Taupenot, L.1
  • 79
    • 0344791717 scopus 로고    scopus 로고
    • The disulfide-bonded loop of chromogranin B mediates membrane binding and directs sorting from the trans-Golgi network to secretory granules
    • Glombik M.M., et al. The disulfide-bonded loop of chromogranin B mediates membrane binding and directs sorting from the trans-Golgi network to secretory granules. EMBO J. 1999, 18:1059-1070.
    • (1999) EMBO J. , vol.18 , pp. 1059-1070
    • Glombik, M.M.1
  • 80
    • 0037039349 scopus 로고    scopus 로고
    • Carboxypeptidase E, a prohormone sorting receptor, is anchored to secretory granules via a C-terminal transmembrane insertion
    • Dhanvantari S., et al. Carboxypeptidase E, a prohormone sorting receptor, is anchored to secretory granules via a C-terminal transmembrane insertion. Biochemistry 2002, 41:52-60.
    • (2002) Biochemistry , vol.41 , pp. 52-60
    • Dhanvantari, S.1
  • 81
    • 0042318454 scopus 로고    scopus 로고
    • The prohormone processing enzyme PC3 is a lipid raft-associated transmembrane protein
    • Arnaoutova I., et al. The prohormone processing enzyme PC3 is a lipid raft-associated transmembrane protein. Biochemistry 2003, 42:10445-10455.
    • (2003) Biochemistry , vol.42 , pp. 10445-10455
    • Arnaoutova, I.1
  • 82
    • 16844370284 scopus 로고    scopus 로고
    • Proprotein convertase PC3 is not a transmembrane protein
    • Stettler H., et al. Proprotein convertase PC3 is not a transmembrane protein. Biochemistry 2005, 44:5339-5345.
    • (2005) Biochemistry , vol.44 , pp. 5339-5345
    • Stettler, H.1
  • 83
    • 2242477525 scopus 로고    scopus 로고
    • In vitro aggregation of the regulated secretory protein chromogranin A
    • Jain R.K., et al. In vitro aggregation of the regulated secretory protein chromogranin A. Biochem. J. 2002, 368:605-610.
    • (2002) Biochem. J. , vol.368 , pp. 605-610
    • Jain, R.K.1
  • 84
    • 0942265534 scopus 로고    scopus 로고
    • Secretogranin III binds to cholesterol in the secretory granule membrane as an adapter for chromogranin A
    • Hosaka M., et al. Secretogranin III binds to cholesterol in the secretory granule membrane as an adapter for chromogranin A. J. Biol. Chem. 2004, 279:3627-3634.
    • (2004) J. Biol. Chem. , vol.279 , pp. 3627-3634
    • Hosaka, M.1
  • 85
    • 0034088234 scopus 로고    scopus 로고
    • Proinsulin endoproteolysis confers enhanced targeting of processed insulin to the regulated secretory pathway
    • Kuliawat R., et al. Proinsulin endoproteolysis confers enhanced targeting of processed insulin to the regulated secretory pathway. Mol. Biol. Cell 2000, 11:1959-1972.
    • (2000) Mol. Biol. Cell , vol.11 , pp. 1959-1972
    • Kuliawat, R.1
  • 86
    • 41949112734 scopus 로고    scopus 로고
    • Structure of the mature ectodomain of the human receptor-type protein-tyrosine phosphatase IA-2
    • Primo M.E., et al. Structure of the mature ectodomain of the human receptor-type protein-tyrosine phosphatase IA-2. J. Biol. Chem. 2008, 283:4674-4681.
    • (2008) J. Biol. Chem. , vol.283 , pp. 4674-4681
    • Primo, M.E.1
  • 87
    • 2242484656 scopus 로고    scopus 로고
    • Multimerization of the protein-tyrosine phosphatase (PTP)-like insulin-dependent diabetes mellitus autoantigens IA-2 and IA-2beta with receptor PTPs (RPTPs). Inhibition of RPTPalpha enzymatic activity
    • Gross S., et al. Multimerization of the protein-tyrosine phosphatase (PTP)-like insulin-dependent diabetes mellitus autoantigens IA-2 and IA-2beta with receptor PTPs (RPTPs). Inhibition of RPTPalpha enzymatic activity. J. Biol. Chem. 2002, 277:48139-48145.
    • (2002) J. Biol. Chem. , vol.277 , pp. 48139-48145
    • Gross, S.1
  • 88
    • 57749107709 scopus 로고    scopus 로고
    • Regulation of insulin granule turnover in pancreatic beta-cells by cleaved ICA512
    • Trajkovski M., et al. Regulation of insulin granule turnover in pancreatic beta-cells by cleaved ICA512. J. Biol. Chem. 2008, 283:33719-33729.
    • (2008) J. Biol. Chem. , vol.283 , pp. 33719-33729
    • Trajkovski, M.1
  • 89
    • 0022979193 scopus 로고
    • Conversion of proinsulin to insulin occurs coordinately with acidification of maturing secretory vesicles
    • Orci L., et al. Conversion of proinsulin to insulin occurs coordinately with acidification of maturing secretory vesicles. J. Cell Bio. 1986, 103:2273-2281.
    • (1986) J. Cell Bio. , vol.103 , pp. 2273-2281
    • Orci, L.1
  • 90
    • 33751511196 scopus 로고    scopus 로고
    • The a3 isoform of V-ATPase regulates insulin secretion from pancreatic beta-cells
    • Sun-Wada G., et al. The a3 isoform of V-ATPase regulates insulin secretion from pancreatic beta-cells. J. Cell Sci. 2006, 119:4531-4540.
    • (2006) J. Cell Sci. , vol.119 , pp. 4531-4540
    • Sun-Wada, G.1
  • 91
    • 50449083525 scopus 로고    scopus 로고
    • Role of furin in granular acidification in the endocrine pancreas: identification of the V-ATPase subunit Ac45 as a candidate substrate
    • Louagie E., et al. Role of furin in granular acidification in the endocrine pancreas: identification of the V-ATPase subunit Ac45 as a candidate substrate. Proc. Natl. Acad. Sci. U. S. A. 2008, 105:12319-12324.
    • (2008) Proc. Natl. Acad. Sci. U. S. A. , vol.105 , pp. 12319-12324
    • Louagie, E.1
  • 92
    • 0034956026 scopus 로고    scopus 로고
    • Priming of insulin granules for exocytosis by granular Cl(-) uptake and acidification
    • Barg S., et al. Priming of insulin granules for exocytosis by granular Cl(-) uptake and acidification. J. Cell Sci. 2001, 114:2145-2154.
    • (2001) J. Cell Sci. , vol.114 , pp. 2145-2154
    • Barg, S.1
  • 93
    • 70349484215 scopus 로고    scopus 로고
    • The granular chloride channel ClC-3 is permissive for insulin secretion
    • Deriy L.V., et al. The granular chloride channel ClC-3 is permissive for insulin secretion. Cell Metab. 2009, 10:316-323.
    • (2009) Cell Metab. , vol.10 , pp. 316-323
    • Deriy, L.V.1
  • 94
    • 70349632869 scopus 로고    scopus 로고
    • Suppression of sulfonylurea- and glucose-induced insulin secretion in vitro and in vivo in mice lacking the chloride transport protein ClC-3
    • Li D., et al. Suppression of sulfonylurea- and glucose-induced insulin secretion in vitro and in vivo in mice lacking the chloride transport protein ClC-3. Cell Metab. 2009, 10:309-315.
    • (2009) Cell Metab. , vol.10 , pp. 309-315
    • Li, D.1
  • 95
    • 0035824525 scopus 로고    scopus 로고
    • Localization of three types of the inositol 1,4,5-trisphosphate receptor/Ca(2+) channel in the secretory granules and coupling with the Ca(2+) storage proteins chromogranins A and B
    • Yoo S.H., et al. Localization of three types of the inositol 1,4,5-trisphosphate receptor/Ca(2+) channel in the secretory granules and coupling with the Ca(2+) storage proteins chromogranins A and B. J. Biol. Chem. 2001, 276:45806-45812.
    • (2001) J. Biol. Chem. , vol.276 , pp. 45806-45812
    • Yoo, S.H.1
  • 96
    • 0037013295 scopus 로고    scopus 로고
    • Activation of the inositol 1,4,5-trisphosphate receptor by the calcium storage protein chromogranin A
    • Thrower E.C., et al. Activation of the inositol 1,4,5-trisphosphate receptor by the calcium storage protein chromogranin A. J. Biol. Chem. 2002, 277:15801-15806.
    • (2002) J. Biol. Chem. , vol.277 , pp. 15801-15806
    • Thrower, E.C.1
  • 97
    • 0029924210 scopus 로고    scopus 로고
    • Inositol 1,4,5-trisphosphate receptor subtype 3 in pancreatic islet cell secretory granules revisited
    • Ravazzola M., et al. Inositol 1,4,5-trisphosphate receptor subtype 3 in pancreatic islet cell secretory granules revisited. Proc. Natl. Acad. Sci. U. S. A. 1996, 93:2745-2748.
    • (1996) Proc. Natl. Acad. Sci. U. S. A. , vol.93 , pp. 2745-2748
    • Ravazzola, M.1
  • 98
    • 0035494420 scopus 로고    scopus 로고
    • Dense core secretory vesicles revealed as a dynamic Ca(2+) store in neuroendocrine cells with a vesicle-associated membrane protein aequorin chimaera
    • Mitchell K.J., et al. Dense core secretory vesicles revealed as a dynamic Ca(2+) store in neuroendocrine cells with a vesicle-associated membrane protein aequorin chimaera. J. Cell Biol. 2001, 155:41-51.
    • (2001) J. Cell Biol. , vol.155 , pp. 41-51
    • Mitchell, K.J.1
  • 99
    • 0037837821 scopus 로고    scopus 로고
    • Ryanodine receptor type I and nicotinic acid adenine dinucleotide phosphate receptors mediate Ca2+ release from insulin-containing vesicles in living pancreatic beta-cells (MIN6)
    • Mitchell K.J., et al. Ryanodine receptor type I and nicotinic acid adenine dinucleotide phosphate receptors mediate Ca2+ release from insulin-containing vesicles in living pancreatic beta-cells (MIN6). J. Biol. Chem. 2003, 278:11057-11064.
    • (2003) J. Biol. Chem. , vol.278 , pp. 11057-11064
    • Mitchell, K.J.1
  • 100
    • 0035201145 scopus 로고    scopus 로고
    • Fast exocytosis with few Ca(2+) channels in insulin-secreting mouse pancreatic B cells
    • Barg S., et al. Fast exocytosis with few Ca(2+) channels in insulin-secreting mouse pancreatic B cells. Biophys. J. 2001, 81:3308-3323.
    • (2001) Biophys. J. , vol.81 , pp. 3308-3323
    • Barg, S.1
  • 101
    • 70349611130 scopus 로고    scopus 로고
    • Chronic palmitate exposure inhibits insulin secretion by dissociation of Ca(2+) channels from secretory granules
    • Hoppa M.B., et al. Chronic palmitate exposure inhibits insulin secretion by dissociation of Ca(2+) channels from secretory granules. Cell Metab. 2009, 10:455-465.
    • (2009) Cell Metab. , vol.10 , pp. 455-465
    • Hoppa, M.B.1
  • 102
    • 77951839161 scopus 로고    scopus 로고
    • Progression of diet-induced diabetes in C57BL6J mice involves functional dissociation of Ca2(+) channels from secretory vesicles
    • Collins S.C., et al. Progression of diet-induced diabetes in C57BL6J mice involves functional dissociation of Ca2(+) channels from secretory vesicles. Diabetes 2010, 59:1192-1201.
    • (2010) Diabetes , vol.59 , pp. 1192-1201
    • Collins, S.C.1
  • 103
    • 0037339774 scopus 로고    scopus 로고
    • The insulin secretory granule is the major site of K(ATP) channels of the endocrine pancreas
    • Geng X., et al. The insulin secretory granule is the major site of K(ATP) channels of the endocrine pancreas. Diabetes 2003, 52:767-776.
    • (2003) Diabetes , vol.52 , pp. 767-776
    • Geng, X.1
  • 104
    • 33744937551 scopus 로고    scopus 로고
    • Intracellular ATP-sensitive K+ channels in mouse pancreatic beta cells: against a role in organelle cation homeostasis
    • Varadi A., et al. Intracellular ATP-sensitive K+ channels in mouse pancreatic beta cells: against a role in organelle cation homeostasis. Diabetologia 2006, 49:1567-1577.
    • (2006) Diabetologia , vol.49 , pp. 1567-1577
    • Varadi, A.1
  • 106
    • 2942590394 scopus 로고    scopus 로고
    • Noc2 is essential in normal regulation of exocytosis in endocrine and exocrine cells
    • Matsumoto M., et al. Noc2 is essential in normal regulation of exocytosis in endocrine and exocrine cells. Proc. Natl. Acad. Sci. U. S. A. 2004, 101:8313-8318.
    • (2004) Proc. Natl. Acad. Sci. U. S. A. , vol.101 , pp. 8313-8318
    • Matsumoto, M.1
  • 107
    • 0141764778 scopus 로고    scopus 로고
    • Involvement of the Rab27 binding protein Slac2c/MyRIP in insulin exocytosis
    • Waselle L., et al. Involvement of the Rab27 binding protein Slac2c/MyRIP in insulin exocytosis. Mol. Biol. Cell 2003, 14:4103-4113.
    • (2003) Mol. Biol. Cell , vol.14 , pp. 4103-4113
    • Waselle, L.1
  • 108
    • 70350520200 scopus 로고    scopus 로고
    • Intracellular serotonin modulates insulin secretion from pancreatic beta-cells by protein serotonylation
    • Paulmann N., et al. Intracellular serotonin modulates insulin secretion from pancreatic beta-cells by protein serotonylation. PLoS Biol. 2009, 7:e1000229.
    • (2009) PLoS Biol. , vol.7
    • Paulmann, N.1
  • 109
    • 37649002935 scopus 로고    scopus 로고
    • Essential role of Epac2/Rap1 signaling in regulation of insulin granule dynamics by cAMP
    • Shibasaki T., et al. Essential role of Epac2/Rap1 signaling in regulation of insulin granule dynamics by cAMP. Proc. Natl. Acad. Sci. U. S. A. 2007, 104:19333-19338.
    • (2007) Proc. Natl. Acad. Sci. U. S. A. , vol.104 , pp. 19333-19338
    • Shibasaki, T.1
  • 110
    • 0033808068 scopus 로고    scopus 로고
    • The receptor tyrosine phosphatase-like protein ICA512 binds the PDZ domains of beta2-syntrophin and nNOS in pancreatic beta-cells
    • Ort T., et al. The receptor tyrosine phosphatase-like protein ICA512 binds the PDZ domains of beta2-syntrophin and nNOS in pancreatic beta-cells. Eur. J. Cell Biol. 2000, 79:621-630.
    • (2000) Eur. J. Cell Biol. , vol.79 , pp. 621-630
    • Ort, T.1
  • 111
    • 0033613833 scopus 로고    scopus 로고
    • Kalirin, a multifunctional PAM COOH-terminal domain interactor protein, affects cytoskeletal organization and ACTH secretion from AtT-20 cells
    • Mains R.E., et al. Kalirin, a multifunctional PAM COOH-terminal domain interactor protein, affects cytoskeletal organization and ACTH secretion from AtT-20 cells. J. Biol. Chem. 1999, 274:2929-2937.
    • (1999) J. Biol. Chem. , vol.274 , pp. 2929-2937
    • Mains, R.E.1
  • 112
    • 0036787346 scopus 로고    scopus 로고
    • Different regulated expression of the tyrosine phosphatase-like proteins IA-2 and phogrin by glucose and insulin in pancreatic islets: relationship to development of insulin secretory responses in early life
    • Löbner K., et al. Different regulated expression of the tyrosine phosphatase-like proteins IA-2 and phogrin by glucose and insulin in pancreatic islets: relationship to development of insulin secretory responses in early life. Diabetes 2002, 51:2982-2988.
    • (2002) Diabetes , vol.51 , pp. 2982-2988
    • Löbner, K.1
  • 113
    • 11244340843 scopus 로고    scopus 로고
    • Nuclear translocation of an ICA512 cytosolic fragment couples granule exocytosis and insulin expression in {beta}-cells
    • Trajkovski M., et al. Nuclear translocation of an ICA512 cytosolic fragment couples granule exocytosis and insulin expression in {beta}-cells. J. Cell Biol. 2004, 167:1063-1074.
    • (2004) J. Cell Biol. , vol.167 , pp. 1063-1074
    • Trajkovski, M.1
  • 114
    • 33744975816 scopus 로고    scopus 로고
    • Synergy of glucose and growth hormone signalling in islet cells through ICA512 and STAT5
    • Mziaut H., et al. Synergy of glucose and growth hormone signalling in islet cells through ICA512 and STAT5. Nat. Cell Biol. 2006, 8:435-445.
    • (2006) Nat. Cell Biol. , vol.8 , pp. 435-445
    • Mziaut, H.1
  • 115
    • 38649136568 scopus 로고    scopus 로고
    • ICA512 signaling enhances pancreatic beta-cell proliferation by regulating cyclins D through STATs
    • Mziaut H., et al. ICA512 signaling enhances pancreatic beta-cell proliferation by regulating cyclins D through STATs. Proc. Natl. Acad. Sci. U. S. A. 2008, 105:674-679.
    • (2008) Proc. Natl. Acad. Sci. U. S. A. , vol.105 , pp. 674-679
    • Mziaut, H.1
  • 116
    • 62749184311 scopus 로고    scopus 로고
    • Gene silencing of phogrin unveils its essential role in glucose-responsive pancreatic beta-cell growth
    • Torii S., et al. Gene silencing of phogrin unveils its essential role in glucose-responsive pancreatic beta-cell growth. Diabetes 2009, 58:682-692.
    • (2009) Diabetes , vol.58 , pp. 682-692
    • Torii, S.1
  • 117
    • 34147163066 scopus 로고    scopus 로고
    • EphA-Ephrin-A-mediated beta cell communication regulates insulin secretion from pancreatic islets
    • Konstantinova I., et al. EphA-Ephrin-A-mediated beta cell communication regulates insulin secretion from pancreatic islets. Cell 2007, 129:359-370.
    • (2007) Cell , vol.129 , pp. 359-370
    • Konstantinova, I.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.