-
1
-
-
53849126165
-
Neural networks and statistical techniques: A review of applications
-
M. Paliwal, and U. Kumar Neural networks and statistical techniques: a review of applications Expert Syst. Appl. 36 January 2009 2 17
-
(2009)
Expert Syst. Appl.
, vol.36
, Issue.JAN.
, pp. 2-17
-
-
Paliwal, M.1
Kumar, U.2
-
2
-
-
2042515742
-
Neural networks in business: A survey of applications (19921998)
-
A. Vellido, P. Lisboa, and J. Vaughan Neural networks in business: a survey of applications (19921998) Expert Syst. Appl. 17 July 1999 51 70
-
(1999)
Expert Syst. Appl.
, vol.17
, Issue.JUL.
, pp. 51-70
-
-
Vellido, A.1
Lisboa, P.2
Vaughan, J.3
-
3
-
-
29144473678
-
Adaptive output feedback tracking control for a class of uncertain nonlinear systems using neural networks
-
Y. Chang, and H. Yen Adaptive output feedback tracking control for a class of uncertain nonlinear systems using neural networks IEEE Trans. Syst. Man Cybern. B 35 December 2005 1311 1316
-
(2005)
IEEE Trans. Syst. Man Cybern. B
, vol.35
, Issue.DEC.
, pp. 1311-1316
-
-
Chang, Y.1
Yen, H.2
-
4
-
-
4243484544
-
Neural network training
-
J.L. Noyes Neural network training E. Fiesler, R. Beale, Handbook of Neural Computation 1997 Oxford University Press Oxford, UK pp. B3.5:1-6
-
(1997)
Handbook of Neural Computation
-
-
Noyes, J.L.1
-
5
-
-
0026624071
-
Using additive noise in back-propagation training
-
L. Holmstrom, and P. Koistinen Using additive noise in back-propagation training IEEE Trans. Neural Netw. 3 January 1992 24 38
-
(1992)
IEEE Trans. Neural Netw.
, vol.3
, Issue.JAN.
, pp. 24-38
-
-
Holmstrom, L.1
Koistinen, P.2
-
6
-
-
0033333990
-
Training neural networks with additive noise in the desired signal
-
C. Wang, and J. Principe Training neural networks with additive noise in the desired signal IEEE Trans. Neural Netw. 10 November 1999 1511 1517
-
(1999)
IEEE Trans. Neural Netw.
, vol.10
, Issue.NOV.
, pp. 1511-1517
-
-
Wang, C.1
Principe, J.2
-
7
-
-
0031236925
-
Asymptotic statistical theory of overtraining and cross-validation
-
S. Amari, N. Murata, K. Muller, M. Finke, and H. Yang Asymptotic statistical theory of overtraining and cross-validation IEEE Trans. Neural Netw. 8 September 1997 985 996
-
(1997)
IEEE Trans. Neural Netw.
, vol.8
, Issue.SEP.
, pp. 985-996
-
-
Amari, S.1
Murata, N.2
Muller, K.3
Finke, M.4
Yang, H.5
-
8
-
-
0032099978
-
Automatic early stopping using cross validation: Quantifying the criteria
-
L. Prechelt Automatic early stopping using cross validation: quantifying the criteria Neural Netw. 11 June 1998 761 767
-
(1998)
Neural Netw.
, vol.11
, Issue.JUN.
, pp. 761-767
-
-
Prechelt, L.1
-
9
-
-
0035654279
-
Feedforward neural network construction using cross validation
-
R. Setiono Feedforward neural network construction using cross validation Neural Comput. 13 December 2001 2865 2877
-
(2001)
Neural Comput.
, vol.13
, Issue.DEC.
, pp. 2865-2877
-
-
Setiono, R.1
-
10
-
-
0001447184
-
Neural-network studies. 1. Comparison of overfitting and overtraining
-
I.V. Tetko, D.J. Livingstone, and A.I. Luik Neural-network studies. 1. Comparison of overfitting and overtraining J. Chem. Inf. Comput. Sci. 35 SeptemberOctober 1995 826 833
-
(1995)
J. Chem. Inf. Comput. Sci.
, vol.35
, Issue.SEP.-OCT.
, pp. 826-833
-
-
Tetko, I.V.1
Livingstone, D.J.2
Luik, A.I.3
-
11
-
-
0033280266
-
Simultaneous training of negatively correlated neural networks in an ensemble
-
Y. Liu, and X. Yao Simultaneous training of negatively correlated neural networks in an ensemble IEEE Trans. Syst. Man Cybern. B 29 December 1999 716 725
-
(1999)
IEEE Trans. Syst. Man Cybern. B
, vol.29
, Issue.DEC.
, pp. 716-725
-
-
Liu, Y.1
Yao, X.2
-
12
-
-
67349203854
-
A new adaptive merging and growing algorithm for designing artificial neural networks
-
M. Islam, M. Sattar, M. Amin, X. Yao, and K. Murase A new adaptive merging and growing algorithm for designing artificial neural networks IEEE Trans. Syst. Man Cybern. B 39 June 2009 705 722
-
(2009)
IEEE Trans. Syst. Man Cybern. B
, vol.39
, Issue.JUN.
, pp. 705-722
-
-
Islam, M.1
Sattar, M.2
Amin, M.3
Yao, X.4
Murase, K.5
-
13
-
-
70349614379
-
A new constructive algorithm for architectural and functional adaptation of artificial neural networks
-
M. Islam, M. Sattar, M. Amin, X. Yao, and K. Murase A new constructive algorithm for architectural and functional adaptation of artificial neural networks IEEE Trans. Syst. Man Cybern. B 39 2009 1590 1605
-
(2009)
IEEE Trans. Syst. Man Cybern. B
, vol.39
, pp. 1590-1605
-
-
Islam, M.1
Sattar, M.2
Amin, M.3
Yao, X.4
Murase, K.5
-
14
-
-
0031240593
-
A surbey of partially connected neural networkds
-
D. Elizondo, and E. Fiesler A surbey of partially connected neural networkds Int. J. Neural Syst. 8 OctoberDecember 1997 535 558
-
(1997)
Int. J. Neural Syst.
, vol.8
, Issue.OCT.-DEC.
, pp. 535-558
-
-
Elizondo, D.1
Fiesler, E.2
-
15
-
-
2542429431
-
Influence of topology on the performance of a neural network
-
J. Torres, M. Munoz, J. Marro, and P. Garrido Influence of topology on the performance of a neural network Neurocomputing 5860 June 2004 229 234
-
(2004)
Neurocomputing
, vol.5860
, Issue.JUN.
, pp. 229-234
-
-
Torres, J.1
Munoz, M.2
Marro, J.3
Garrido, P.4
-
16
-
-
0005819421
-
Identification of nonlinear dynamic models with partially connected neural networks trained using orthogonal least square estimation
-
A. Rajapakse, K. Furuta, and S. Kondo Identification of nonlinear dynamic models with partially connected neural networks trained using orthogonal least square estimation Trans. IEEJ-Part C 119-C March 1999 335 343
-
(1999)
Trans. IEEJ-Part C
, vol.119 C
, Issue.MAR.
, pp. 335-343
-
-
Rajapakse, A.1
Furuta, K.2
Kondo, S.3
-
17
-
-
2642555924
-
Flight control using an artificial neural network
-
G. Wyeth, G. Buskey, J. Roberts, Flight control using an artificial neural network, in: Proc. of the Australian Conf. on Robot. and Automat., ACRA'00, 2000, pp. 6570.
-
(2000)
Proc. of the Australian Conf. on Robot. and Automat., ACRA'00
, pp. 65-70
-
-
Wyeth, G.1
Buskey, G.2
Roberts, J.3
-
18
-
-
13844298048
-
Partially connected feedforward neural networks structured by input types
-
S. Kang, and C. Isik Partially connected feedforward neural networks structured by input types IEEE Trans. Neural Netw. 16 January 2005 175 184
-
(2005)
IEEE Trans. Neural Netw.
, vol.16
, Issue.JAN.
, pp. 175-184
-
-
Kang, S.1
Isik, C.2
-
19
-
-
33750466904
-
Small-world brain networks
-
D. Bassett, and E. Bullmore Small-world brain networks Neuroscientist 12 December 2006 512 523
-
(2006)
Neuroscientist
, vol.12
, Issue.DEC.
, pp. 512-523
-
-
Bassett, D.1
Bullmore, E.2
-
20
-
-
33845909323
-
Small worlds inside big brains
-
O. Sporns, and C.J. Honey Small worlds inside big brains Proc. Natl. Acad. Sci. USA 103 December 2006 19219 19220
-
(2006)
Proc. Natl. Acad. Sci. USA
, vol.103
, Issue.DEC.
, pp. 19219-19220
-
-
Sporns, O.1
Honey, C.J.2
-
21
-
-
0032482432
-
Collective dynamics of 'small-world' networks
-
D. Watts, and S. Strogatz Collective dynamics of 'small-world' networks Nature 393 June 1998 440 442
-
(1998)
Nature
, vol.393
, Issue.JUN.
, pp. 440-442
-
-
Watts, D.1
Strogatz, S.2
-
22
-
-
33845639718
-
Topological relationships between brain and social networks
-
S. Sakata, and T. Yamamori Topological relationships between brain and social networks Neural Netw. 20 January 2007 12 21
-
(2007)
Neural Netw.
, vol.20
, Issue.JAN.
, pp. 12-21
-
-
Sakata, S.1
Yamamori, T.2
-
23
-
-
18144406182
-
Scale-free brain functional networks
-
V. Eguiluz, D. Chialvo, G. Cecchi, M. Baliki, and A. Apkarian Scale-free brain functional networks Phys. Rev. Lett. 94 January 2005 018102:1-4
-
(2005)
Phys. Rev. Lett.
, vol.94
, Issue.JAN.
-
-
Eguiluz, V.1
Chialvo, D.2
Cecchi, G.3
Baliki, M.4
Apkarian, A.5
-
24
-
-
34250001993
-
Simulation of robustness against lesions of cortical networks
-
M. Kaiser, R. Martin, P. Andras, and M. Young Simulation of robustness against lesions of cortical networks Eur. J. Neurosci. 25 May 2007 3185 3192
-
(2007)
Eur. J. Neurosci.
, vol.25
, Issue.MAY
, pp. 3185-3192
-
-
Kaiser, M.1
Martin, R.2
Andras, P.3
Young, M.4
-
25
-
-
34548609011
-
Collective behavior of a small-world recurrent neural system with scale-free distribution
-
Z. Deng, and Y. Zhang Collective behavior of a small-world recurrent neural system with scale-free distribution IEEE Trans. Neural Netw. 18 September 2007 1364 1375
-
(2007)
IEEE Trans. Neural Netw.
, vol.18
, Issue.SEP.
, pp. 1364-1375
-
-
Deng, Z.1
Zhang, Y.2
-
26
-
-
58249083748
-
Impact of network topology on decision-making
-
S. Lu, J. Fang, A. Guo, and Y. Peng Impact of network topology on decision-making Neural Netw. 22 January 2009 30 40
-
(2009)
Neural Netw.
, vol.22
, Issue.JAN.
, pp. 30-40
-
-
Lu, S.1
Fang, J.2
Guo, A.3
Peng, Y.4
-
27
-
-
13144282731
-
Fastest learning in small-world neural networks
-
D. Simard, L. Nadeau, and H. Kroger Fastest learning in small-world neural networks Phys. Lett. A 336 February 28 2005 8 15
-
(2005)
Phys. Lett. A
, vol.336
, Issue.FEB. 28
, pp. 8-15
-
-
Simard, D.1
Nadeau, L.2
Kroger, H.3
-
28
-
-
77749239921
-
Learning as a phenomenon occurring in a critical state
-
L. de Arcangelis, and H. Herrmann Learning as a phenomenon occurring in a critical state Proc. Natl. Acad. Sci. USA 107 March 2 2010 3977 3981
-
(2010)
Proc. Natl. Acad. Sci. USA
, vol.107
, Issue.MAR. 2
, pp. 3977-3981
-
-
De Arcangelis, L.1
Herrmann, H.2
-
29
-
-
23944498581
-
Efficient Hopfield pattern recognition on a scale-free neural network
-
D. Stauffer, A. Aharony, L. Costa, and J. Adler Efficient Hopfield pattern recognition on a scale-free neural network Eur. Phys. J. B 32 April 2003 395 399
-
(2003)
Eur. Phys. J. B
, vol.32
, Issue.APR.
, pp. 395-399
-
-
Stauffer, D.1
Aharony, A.2
Costa, L.3
Adler, J.4
-
31
-
-
18144407310
-
Apollonian networks: Simultaneously scale-free, small world, Euclidean, space filling, and with matching graphs
-
J. Andrade, H. Herrmann, R. Andrade, and L. da Silva Apollonian networks: simultaneously scale-free, small world, Euclidean, space filling, and with matching graphs Phys. Rev. Lett. 94 January 14 2005 018702:1-4
-
(2005)
Phys. Rev. Lett.
, vol.94
, Issue.JAN. 14
-
-
Andrade, J.1
Herrmann, H.2
Andrade, R.3
Da Silva, L.4
-
33
-
-
33846446220
-
Restart procedures for conjugate gradient method
-
M. Powell Restart procedures for conjugate gradient method Math. Program. 12 December 1977 241 254
-
(1977)
Math. Program.
, vol.12
, Issue.DEC.
, pp. 241-254
-
-
Powell, M.1
-
34
-
-
0001025418
-
Bayesian interpolation
-
D. Mackay Bayesian interpolation Neural Comput. 4 May 1992 415 447
-
(1992)
Neural Comput.
, vol.4
, Issue.MAY
, pp. 415-447
-
-
MacKay, D.1
-
35
-
-
0034288942
-
The M3-competition: Results, conclusions and implications
-
S. Makridakis, and M. Hibon The M3-competition: results, conclusions and implications Int. J. Forecast. 16 OctoberDecember 2000 451 476
-
(2000)
Int. J. Forecast.
, vol.16
, Issue.OCT.-DEC.
, pp. 451-476
-
-
Makridakis, S.1
Hibon, M.2
-
36
-
-
0025536870
-
Improving the learning speed of 2-layer neural networks by choosing initial values of the adaptive weights
-
D. Nguyen, B. Widrow, Improving the learning speed of 2-layer neural networks by choosing initial values of the adaptive weights, in: Proc. of the Int. Joint Conf. on Neural Networks, 1990, pp. 2126.
-
(1990)
Proc. of the Int. Joint Conf. on Neural Networks
, pp. 21-26
-
-
Nguyen, D.1
Widrow, B.2
-
37
-
-
33144466864
-
Tuning the structure and parameters of a neural network by using hybrid Taguchi-genetic algorithm
-
J. Tsai, J. Chou, and T. Liu Tuning the structure and parameters of a neural network by using hybrid Taguchi-genetic algorithm IEEE Trans. Neural Netw. 17 January 2006 69 80
-
(2006)
IEEE Trans. Neural Netw.
, vol.17
, Issue.JAN.
, pp. 69-80
-
-
Tsai, J.1
Chou, J.2
Liu, T.3
-
38
-
-
32844457101
-
The value of nonlinear models in the M3-competition
-
S. Balkin The value of nonlinear models in the M3-competition Int. J. Forecast. 17 OctoberDecember 2001 545 546
-
(2001)
Int. J. Forecast.
, vol.17
, Issue.OCT.-DEC.
, pp. 545-546
-
-
Balkin, S.1
-
39
-
-
0024103809
-
PRISM: An algorithm for inducing modular rules
-
J. Cendrowska PRISM: an algorithm for inducing modular rules Int. J. ManMach. Stud. 27 October 1987 349 370
-
(1987)
Int. J. ManMach. Stud.
, vol.27
, Issue.OCT.
, pp. 349-370
-
-
Cendrowska, J.1
-
40
-
-
0034274591
-
A comparison of prediction accuracy, complexity, and training time of thirty-three old and new classification algorithms
-
T.-S. Lim, W.-Y. Loh, and Y.-S. Shih A comparison of prediction accuracy, complexity, and training time of thirty-three old and new classification algorithms Mach. Learn. 40 September 2000 203 229
-
(2000)
Mach. Learn.
, vol.40
, Issue.SEP.
, pp. 203-229
-
-
Lim, T.-S.1
Loh, W.-Y.2
Shih, Y.-S.3
|