메뉴 건너뛰기




Volumn 389, Issue 22, 2010, Pages 5298-5307

Partially connected feedforward neural networks on Apollonian networks

Author keywords

Apollonian networks; Feedforward neural networks; Partially connected neural networks; Randomly connected neural networks

Indexed keywords

LEARNING ALGORITHMS;

EID: 77956949923     PISSN: 03784371     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.physa.2010.06.061     Document Type: Article
Times cited : (9)

References (40)
  • 1
    • 53849126165 scopus 로고    scopus 로고
    • Neural networks and statistical techniques: A review of applications
    • M. Paliwal, and U. Kumar Neural networks and statistical techniques: a review of applications Expert Syst. Appl. 36 January 2009 2 17
    • (2009) Expert Syst. Appl. , vol.36 , Issue.JAN. , pp. 2-17
    • Paliwal, M.1    Kumar, U.2
  • 2
    • 2042515742 scopus 로고    scopus 로고
    • Neural networks in business: A survey of applications (19921998)
    • A. Vellido, P. Lisboa, and J. Vaughan Neural networks in business: a survey of applications (19921998) Expert Syst. Appl. 17 July 1999 51 70
    • (1999) Expert Syst. Appl. , vol.17 , Issue.JUL. , pp. 51-70
    • Vellido, A.1    Lisboa, P.2    Vaughan, J.3
  • 3
    • 29144473678 scopus 로고    scopus 로고
    • Adaptive output feedback tracking control for a class of uncertain nonlinear systems using neural networks
    • Y. Chang, and H. Yen Adaptive output feedback tracking control for a class of uncertain nonlinear systems using neural networks IEEE Trans. Syst. Man Cybern. B 35 December 2005 1311 1316
    • (2005) IEEE Trans. Syst. Man Cybern. B , vol.35 , Issue.DEC. , pp. 1311-1316
    • Chang, Y.1    Yen, H.2
  • 4
    • 4243484544 scopus 로고    scopus 로고
    • Neural network training
    • J.L. Noyes Neural network training E. Fiesler, R. Beale, Handbook of Neural Computation 1997 Oxford University Press Oxford, UK pp. B3.5:1-6
    • (1997) Handbook of Neural Computation
    • Noyes, J.L.1
  • 5
    • 0026624071 scopus 로고
    • Using additive noise in back-propagation training
    • L. Holmstrom, and P. Koistinen Using additive noise in back-propagation training IEEE Trans. Neural Netw. 3 January 1992 24 38
    • (1992) IEEE Trans. Neural Netw. , vol.3 , Issue.JAN. , pp. 24-38
    • Holmstrom, L.1    Koistinen, P.2
  • 6
    • 0033333990 scopus 로고    scopus 로고
    • Training neural networks with additive noise in the desired signal
    • C. Wang, and J. Principe Training neural networks with additive noise in the desired signal IEEE Trans. Neural Netw. 10 November 1999 1511 1517
    • (1999) IEEE Trans. Neural Netw. , vol.10 , Issue.NOV. , pp. 1511-1517
    • Wang, C.1    Principe, J.2
  • 7
    • 0031236925 scopus 로고    scopus 로고
    • Asymptotic statistical theory of overtraining and cross-validation
    • S. Amari, N. Murata, K. Muller, M. Finke, and H. Yang Asymptotic statistical theory of overtraining and cross-validation IEEE Trans. Neural Netw. 8 September 1997 985 996
    • (1997) IEEE Trans. Neural Netw. , vol.8 , Issue.SEP. , pp. 985-996
    • Amari, S.1    Murata, N.2    Muller, K.3    Finke, M.4    Yang, H.5
  • 8
    • 0032099978 scopus 로고    scopus 로고
    • Automatic early stopping using cross validation: Quantifying the criteria
    • L. Prechelt Automatic early stopping using cross validation: quantifying the criteria Neural Netw. 11 June 1998 761 767
    • (1998) Neural Netw. , vol.11 , Issue.JUN. , pp. 761-767
    • Prechelt, L.1
  • 9
    • 0035654279 scopus 로고    scopus 로고
    • Feedforward neural network construction using cross validation
    • R. Setiono Feedforward neural network construction using cross validation Neural Comput. 13 December 2001 2865 2877
    • (2001) Neural Comput. , vol.13 , Issue.DEC. , pp. 2865-2877
    • Setiono, R.1
  • 10
    • 0001447184 scopus 로고
    • Neural-network studies. 1. Comparison of overfitting and overtraining
    • I.V. Tetko, D.J. Livingstone, and A.I. Luik Neural-network studies. 1. Comparison of overfitting and overtraining J. Chem. Inf. Comput. Sci. 35 SeptemberOctober 1995 826 833
    • (1995) J. Chem. Inf. Comput. Sci. , vol.35 , Issue.SEP.-OCT. , pp. 826-833
    • Tetko, I.V.1    Livingstone, D.J.2    Luik, A.I.3
  • 11
    • 0033280266 scopus 로고    scopus 로고
    • Simultaneous training of negatively correlated neural networks in an ensemble
    • Y. Liu, and X. Yao Simultaneous training of negatively correlated neural networks in an ensemble IEEE Trans. Syst. Man Cybern. B 29 December 1999 716 725
    • (1999) IEEE Trans. Syst. Man Cybern. B , vol.29 , Issue.DEC. , pp. 716-725
    • Liu, Y.1    Yao, X.2
  • 12
    • 67349203854 scopus 로고    scopus 로고
    • A new adaptive merging and growing algorithm for designing artificial neural networks
    • M. Islam, M. Sattar, M. Amin, X. Yao, and K. Murase A new adaptive merging and growing algorithm for designing artificial neural networks IEEE Trans. Syst. Man Cybern. B 39 June 2009 705 722
    • (2009) IEEE Trans. Syst. Man Cybern. B , vol.39 , Issue.JUN. , pp. 705-722
    • Islam, M.1    Sattar, M.2    Amin, M.3    Yao, X.4    Murase, K.5
  • 13
    • 70349614379 scopus 로고    scopus 로고
    • A new constructive algorithm for architectural and functional adaptation of artificial neural networks
    • M. Islam, M. Sattar, M. Amin, X. Yao, and K. Murase A new constructive algorithm for architectural and functional adaptation of artificial neural networks IEEE Trans. Syst. Man Cybern. B 39 2009 1590 1605
    • (2009) IEEE Trans. Syst. Man Cybern. B , vol.39 , pp. 1590-1605
    • Islam, M.1    Sattar, M.2    Amin, M.3    Yao, X.4    Murase, K.5
  • 14
    • 0031240593 scopus 로고    scopus 로고
    • A surbey of partially connected neural networkds
    • D. Elizondo, and E. Fiesler A surbey of partially connected neural networkds Int. J. Neural Syst. 8 OctoberDecember 1997 535 558
    • (1997) Int. J. Neural Syst. , vol.8 , Issue.OCT.-DEC. , pp. 535-558
    • Elizondo, D.1    Fiesler, E.2
  • 15
    • 2542429431 scopus 로고    scopus 로고
    • Influence of topology on the performance of a neural network
    • J. Torres, M. Munoz, J. Marro, and P. Garrido Influence of topology on the performance of a neural network Neurocomputing 5860 June 2004 229 234
    • (2004) Neurocomputing , vol.5860 , Issue.JUN. , pp. 229-234
    • Torres, J.1    Munoz, M.2    Marro, J.3    Garrido, P.4
  • 16
    • 0005819421 scopus 로고    scopus 로고
    • Identification of nonlinear dynamic models with partially connected neural networks trained using orthogonal least square estimation
    • A. Rajapakse, K. Furuta, and S. Kondo Identification of nonlinear dynamic models with partially connected neural networks trained using orthogonal least square estimation Trans. IEEJ-Part C 119-C March 1999 335 343
    • (1999) Trans. IEEJ-Part C , vol.119 C , Issue.MAR. , pp. 335-343
    • Rajapakse, A.1    Furuta, K.2    Kondo, S.3
  • 18
    • 13844298048 scopus 로고    scopus 로고
    • Partially connected feedforward neural networks structured by input types
    • S. Kang, and C. Isik Partially connected feedforward neural networks structured by input types IEEE Trans. Neural Netw. 16 January 2005 175 184
    • (2005) IEEE Trans. Neural Netw. , vol.16 , Issue.JAN. , pp. 175-184
    • Kang, S.1    Isik, C.2
  • 19
    • 33750466904 scopus 로고    scopus 로고
    • Small-world brain networks
    • D. Bassett, and E. Bullmore Small-world brain networks Neuroscientist 12 December 2006 512 523
    • (2006) Neuroscientist , vol.12 , Issue.DEC. , pp. 512-523
    • Bassett, D.1    Bullmore, E.2
  • 20
    • 33845909323 scopus 로고    scopus 로고
    • Small worlds inside big brains
    • O. Sporns, and C.J. Honey Small worlds inside big brains Proc. Natl. Acad. Sci. USA 103 December 2006 19219 19220
    • (2006) Proc. Natl. Acad. Sci. USA , vol.103 , Issue.DEC. , pp. 19219-19220
    • Sporns, O.1    Honey, C.J.2
  • 21
    • 0032482432 scopus 로고    scopus 로고
    • Collective dynamics of 'small-world' networks
    • D. Watts, and S. Strogatz Collective dynamics of 'small-world' networks Nature 393 June 1998 440 442
    • (1998) Nature , vol.393 , Issue.JUN. , pp. 440-442
    • Watts, D.1    Strogatz, S.2
  • 22
    • 33845639718 scopus 로고    scopus 로고
    • Topological relationships between brain and social networks
    • S. Sakata, and T. Yamamori Topological relationships between brain and social networks Neural Netw. 20 January 2007 12 21
    • (2007) Neural Netw. , vol.20 , Issue.JAN. , pp. 12-21
    • Sakata, S.1    Yamamori, T.2
  • 24
    • 34250001993 scopus 로고    scopus 로고
    • Simulation of robustness against lesions of cortical networks
    • M. Kaiser, R. Martin, P. Andras, and M. Young Simulation of robustness against lesions of cortical networks Eur. J. Neurosci. 25 May 2007 3185 3192
    • (2007) Eur. J. Neurosci. , vol.25 , Issue.MAY , pp. 3185-3192
    • Kaiser, M.1    Martin, R.2    Andras, P.3    Young, M.4
  • 25
    • 34548609011 scopus 로고    scopus 로고
    • Collective behavior of a small-world recurrent neural system with scale-free distribution
    • Z. Deng, and Y. Zhang Collective behavior of a small-world recurrent neural system with scale-free distribution IEEE Trans. Neural Netw. 18 September 2007 1364 1375
    • (2007) IEEE Trans. Neural Netw. , vol.18 , Issue.SEP. , pp. 1364-1375
    • Deng, Z.1    Zhang, Y.2
  • 26
    • 58249083748 scopus 로고    scopus 로고
    • Impact of network topology on decision-making
    • S. Lu, J. Fang, A. Guo, and Y. Peng Impact of network topology on decision-making Neural Netw. 22 January 2009 30 40
    • (2009) Neural Netw. , vol.22 , Issue.JAN. , pp. 30-40
    • Lu, S.1    Fang, J.2    Guo, A.3    Peng, Y.4
  • 27
    • 13144282731 scopus 로고    scopus 로고
    • Fastest learning in small-world neural networks
    • D. Simard, L. Nadeau, and H. Kroger Fastest learning in small-world neural networks Phys. Lett. A 336 February 28 2005 8 15
    • (2005) Phys. Lett. A , vol.336 , Issue.FEB. 28 , pp. 8-15
    • Simard, D.1    Nadeau, L.2    Kroger, H.3
  • 28
    • 77749239921 scopus 로고    scopus 로고
    • Learning as a phenomenon occurring in a critical state
    • L. de Arcangelis, and H. Herrmann Learning as a phenomenon occurring in a critical state Proc. Natl. Acad. Sci. USA 107 March 2 2010 3977 3981
    • (2010) Proc. Natl. Acad. Sci. USA , vol.107 , Issue.MAR. 2 , pp. 3977-3981
    • De Arcangelis, L.1    Herrmann, H.2
  • 29
    • 23944498581 scopus 로고    scopus 로고
    • Efficient Hopfield pattern recognition on a scale-free neural network
    • D. Stauffer, A. Aharony, L. Costa, and J. Adler Efficient Hopfield pattern recognition on a scale-free neural network Eur. Phys. J. B 32 April 2003 395 399
    • (2003) Eur. Phys. J. B , vol.32 , Issue.APR. , pp. 395-399
    • Stauffer, D.1    Aharony, A.2    Costa, L.3    Adler, J.4
  • 31
    • 18144407310 scopus 로고    scopus 로고
    • Apollonian networks: Simultaneously scale-free, small world, Euclidean, space filling, and with matching graphs
    • J. Andrade, H. Herrmann, R. Andrade, and L. da Silva Apollonian networks: simultaneously scale-free, small world, Euclidean, space filling, and with matching graphs Phys. Rev. Lett. 94 January 14 2005 018702:1-4
    • (2005) Phys. Rev. Lett. , vol.94 , Issue.JAN. 14
    • Andrade, J.1    Herrmann, H.2    Andrade, R.3    Da Silva, L.4
  • 33
    • 33846446220 scopus 로고
    • Restart procedures for conjugate gradient method
    • M. Powell Restart procedures for conjugate gradient method Math. Program. 12 December 1977 241 254
    • (1977) Math. Program. , vol.12 , Issue.DEC. , pp. 241-254
    • Powell, M.1
  • 34
    • 0001025418 scopus 로고
    • Bayesian interpolation
    • D. Mackay Bayesian interpolation Neural Comput. 4 May 1992 415 447
    • (1992) Neural Comput. , vol.4 , Issue.MAY , pp. 415-447
    • MacKay, D.1
  • 35
    • 0034288942 scopus 로고    scopus 로고
    • The M3-competition: Results, conclusions and implications
    • S. Makridakis, and M. Hibon The M3-competition: results, conclusions and implications Int. J. Forecast. 16 OctoberDecember 2000 451 476
    • (2000) Int. J. Forecast. , vol.16 , Issue.OCT.-DEC. , pp. 451-476
    • Makridakis, S.1    Hibon, M.2
  • 36
    • 0025536870 scopus 로고
    • Improving the learning speed of 2-layer neural networks by choosing initial values of the adaptive weights
    • D. Nguyen, B. Widrow, Improving the learning speed of 2-layer neural networks by choosing initial values of the adaptive weights, in: Proc. of the Int. Joint Conf. on Neural Networks, 1990, pp. 2126.
    • (1990) Proc. of the Int. Joint Conf. on Neural Networks , pp. 21-26
    • Nguyen, D.1    Widrow, B.2
  • 37
    • 33144466864 scopus 로고    scopus 로고
    • Tuning the structure and parameters of a neural network by using hybrid Taguchi-genetic algorithm
    • J. Tsai, J. Chou, and T. Liu Tuning the structure and parameters of a neural network by using hybrid Taguchi-genetic algorithm IEEE Trans. Neural Netw. 17 January 2006 69 80
    • (2006) IEEE Trans. Neural Netw. , vol.17 , Issue.JAN. , pp. 69-80
    • Tsai, J.1    Chou, J.2    Liu, T.3
  • 38
    • 32844457101 scopus 로고    scopus 로고
    • The value of nonlinear models in the M3-competition
    • S. Balkin The value of nonlinear models in the M3-competition Int. J. Forecast. 17 OctoberDecember 2001 545 546
    • (2001) Int. J. Forecast. , vol.17 , Issue.OCT.-DEC. , pp. 545-546
    • Balkin, S.1
  • 39
    • 0024103809 scopus 로고
    • PRISM: An algorithm for inducing modular rules
    • J. Cendrowska PRISM: an algorithm for inducing modular rules Int. J. ManMach. Stud. 27 October 1987 349 370
    • (1987) Int. J. ManMach. Stud. , vol.27 , Issue.OCT. , pp. 349-370
    • Cendrowska, J.1
  • 40
    • 0034274591 scopus 로고    scopus 로고
    • A comparison of prediction accuracy, complexity, and training time of thirty-three old and new classification algorithms
    • T.-S. Lim, W.-Y. Loh, and Y.-S. Shih A comparison of prediction accuracy, complexity, and training time of thirty-three old and new classification algorithms Mach. Learn. 40 September 2000 203 229
    • (2000) Mach. Learn. , vol.40 , Issue.SEP. , pp. 203-229
    • Lim, T.-S.1    Loh, W.-Y.2    Shih, Y.-S.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.