메뉴 건너뛰기




Volumn , Issue , 2010, Pages 119-126

Multi-agent learning experiments on repeated matrix games

Author keywords

[No Author keywords available]

Indexed keywords

COOPERATIVE GAME; MATRIX GAME; MULTI-AGENT LEARNING; Q-LEARNING; STATE OF THE ART; ZERO-SUM GAME;

EID: 77956556555     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (19)

References (26)
  • 1
    • 34547255414 scopus 로고    scopus 로고
    • Evolutionary tournament-based comparison of learning and non-learning algorithm for iterated games
    • ISSN 1460-7425
    • Airiau, S., Saha, S., and Sen, S. Evolutionary tournament-based comparison of learning and non-learning algorithm for iterated games. Journal of Artificial Societies and Social Simulation, 10(3):7, 2007. ISSN 1460-7425.
    • (2007) Journal of Artificial Societies and Social Simulation , vol.10 , Issue.3 , pp. 7
    • Airiau, S.1    Saha, S.2    Sen, S.3
  • 2
    • 0036568025 scopus 로고    scopus 로고
    • Finite-time analysis of the multi-armed bandit problem
    • Auer, P., Cesa-Bianchi, N., and Fischer, P. Finite-time analysis of the multi-armed bandit problem. Machine Learning, 47(2-3):235-256, 2002a.
    • (2002) Machine Learning , vol.47 , Issue.2-3 , pp. 235-256
    • Auer, P.1    Cesa-Bianchi, N.2    Fischer, P.3
  • 4
    • 9444299000 scopus 로고    scopus 로고
    • Performance bounded reinforcement learning in strategic interactions
    • Banerjee, B. and Peng, J. Performance bounded reinforcement learning in strategic interactions. In AAAI, pp. 2-7, 2004.
    • (2004) AAAI , pp. 2-7
    • Banerjee, B.1    Peng, J.2
  • 6
  • 8
    • 31844456904 scopus 로고    scopus 로고
    • Hedged learning: Regret-minimization with learning experts
    • Chang, Y.H. and Kaelbling, L.P. Hedged learning: regret-minimization with learning experts. In ICML, pp. 121-128, 2005.
    • (2005) ICML , pp. 121-128
    • Chang, Y.H.1    Kaelbling, L.P.2
  • 9
    • 0031630561 scopus 로고    scopus 로고
    • The dynamics of reinforcement learning in cooperative multi-agent systems
    • Claus, C. and Boutilier, C. The dynamics of reinforcement learning in cooperative multi-agent systems. In AAAI, pp. 746-752, 1998.
    • (1998) AAAI , pp. 746-752
    • Claus, C.1    Boutilier, C.2
  • 10
    • 1942421183 scopus 로고    scopus 로고
    • AWESOME: A general multiagent learning algorithm that converges in self-play and learns a best response against stationary opponents
    • Conitzer, V. and Sandholm, T. AWESOME: A general multiagent learning algorithm that converges in self-play and learns a best response against stationary opponents. In ICML, pp. 83-90, 2003.
    • (2003) ICML , pp. 83-90
    • Conitzer, V.1    Sandholm, T.2
  • 11
    • 31844455339 scopus 로고    scopus 로고
    • Learning to compete, compromise, and cooperate in repeated general-sum games
    • Crandall, J.W. and Goodrich, M.A. Learning to compete, compromise, and cooperate in repeated general-sum games. In ICML, pp. 161-168, 2005.
    • (2005) ICML , pp. 161-168
    • Crandall, J.W.1    Goodrich, M.A.2
  • 12
    • 0000908510 scopus 로고    scopus 로고
    • A simple adaptive procedure leading to correlated equilibrium
    • September
    • Hart, S. and Mas-Colell, A. A simple adaptive procedure leading to correlated equilibrium. Econometrica, 68(5):1127-1150, September 2000.
    • (2000) Econometrica , vol.68 , Issue.5 , pp. 1127-1150
    • Hart, S.1    Mas-Colell, A.2
  • 13
    • 85149834820 scopus 로고
    • Markov games as a framework for multi-agent reinforcement learning
    • Littman, M. Markov games as a framework for multi-agent reinforcement learning. In ICML, pp. 157-163, 1994.
    • (1994) ICML , pp. 157-163
    • Littman, M.1
  • 14
    • 0242466944 scopus 로고    scopus 로고
    • Friend-or-foe Q-learning in general-sum games
    • Littman, M. Friend-or-foe Q-learning in general-sum games. In ICML, pp. 322-328, 2001.
    • (2001) ICML , pp. 322-328
    • Littman, M.1
  • 15
    • 4544335718 scopus 로고    scopus 로고
    • Run the GAMUT: A comprehensive approach to evaluating game-theoretic algorithms
    • Nudelman, E., Wortman, J., Shoham, Y., and Leyton-Brown, K. Run the GAMUT: a comprehensive approach to evaluating game-theoretic algorithms. In AMAAS, pp. 880-887, 2004.
    • (2004) AMAAS , pp. 880-887
    • Nudelman, E.1    Wortman, J.2    Shoham, Y.3    Leyton-Brown, K.4
  • 16
    • 32844460921 scopus 로고    scopus 로고
    • New criteria and a new algorithm for learning in multiagent systems
    • Powers, R. and Shoham, Y. New criteria and a new algorithm for learning in multiagent systems. In NIPS, 2004.
    • (2004) NIPS
    • Powers, R.1    Shoham, Y.2
  • 17
    • 33745609272 scopus 로고    scopus 로고
    • Learning against opponents with bounded memory
    • Powers, R. and Shoham, Y. Learning against opponents with bounded memory. In IJCAI, pp. 817-822, 2005.
    • (2005) IJCAI , pp. 817-822
    • Powers, R.1    Shoham, Y.2
  • 18
    • 34147097403 scopus 로고    scopus 로고
    • A general criterion and an algorithmic framework for learning in multi-agent systems
    • Powers, R., Shoham, Y., and Vu, T. A general criterion and an algorithmic framework for learning in multi-agent systems. Machine Learning, 67(1-2):45-76, 2007.
    • (2007) Machine Learning , vol.67 , Issue.1-2 , pp. 45-76
    • Powers, R.1    Shoham, Y.2    Vu, T.3
  • 19
    • 0001402950 scopus 로고
    • An iterative method of solving a game
    • Robinson, J. An iterative method of solving a game. Annals of Mathematics, 44:296-301, 1951.
    • (1951) Annals of Mathematics , vol.44 , pp. 296-301
    • Robinson, J.1
  • 20
    • 0030050933 scopus 로고    scopus 로고
    • Multiagent reinforcement learning in the iterated prisoner's dilemma
    • Sandholm, T. and Crites, R. Multiagent reinforcement learning in the iterated prisoner's dilemma. Biosystems, 37(1-2):147-166, 1996.
    • (1996) Biosystems , vol.37 , Issue.1-2 , pp. 147-166
    • Sandholm, T.1    Crites, R.2
  • 21
    • 34147161536 scopus 로고    scopus 로고
    • If multi-agent learning is the answer, what is the question?
    • Shoham, Y., Powers, R., and Grenager, T. If multi-agent learning is the answer, what is the question? Artificial Intelligence, 171:365-377, 2007.
    • (2007) Artificial Intelligence , vol.171 , pp. 365-377
    • Shoham, Y.1    Powers, R.2    Grenager, T.3
  • 22
    • 34249699690 scopus 로고    scopus 로고
    • Nash convergence of gradient dynamics in general-sum games
    • Singh, S., Kearns, M., and Mansour, Y. Nash convergence of gradient dynamics in general-sum games. In UAI, pp. 541-548, 2000.
    • (2000) UAI , pp. 541-548
    • Singh, S.1    Kearns, M.2    Mansour, Y.3
  • 23
    • 1942452233 scopus 로고    scopus 로고
    • Learning to cooperate in a social dilemma: A satisficing approach to bargaining
    • Stimpson, J.L. and Goodrich, M.A. Learning to cooperate in a social dilemma: a satisficing approach to bargaining. In ICML, pp. 728-735, 2003.
    • (2003) ICML , pp. 728-735
    • Stimpson, J.L.1    Goodrich, M.A.2
  • 24
    • 0242635251 scopus 로고    scopus 로고
    • Implicit negotiation in repeated games
    • Meyer, John-Jules and Tambe, Milind (eds.)
    • Stone, P. and Littman, M. Implicit negotiation in repeated games. In Meyer, John-Jules and Tambe, Milind (eds.), ATAL, pp. 96-105, 2001.
    • (2001) ATAL , pp. 96-105
    • Stone, P.1    Littman, M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.