-
2
-
-
0001980141
-
The Evolution of Strategies in the Iterated Prisoner's Dilemma
-
Lawrence Davis ed, London: Pitman, and Los Altos, CA: Morgan Kaufman
-
AXELROD R (1987) The Evolution of Strategies in the Iterated Prisoner's Dilemma. In Genetic Algorithms and Simulated Annealing, Lawrence Davis (ed.) (London: Pitman, and Los Altos, CA: Morgan Kaufman, 1987), pp. 32-41.
-
(1987)
Genetic Algorithms and Simulated Annealing
, pp. 32-41
-
-
AXELROD, R.1
-
3
-
-
34547378263
-
-
Reprinted as Evolving New Strategies, pp. 10-39. in Axelrod, R. M. (1997).
-
Reprinted as Evolving New Strategies, pp. 10-39. in Axelrod, R. M. (1997).
-
-
-
-
5
-
-
34249676853
-
Reaching pareto-optimality in prisoner's dilemma using conditional Joint action learning
-
August, Springer Netherlands
-
BANERJEE D and Sen S (2007) Reaching pareto-optimality in prisoner's dilemma using conditional Joint action learning. In Autonomous Agents and Multi-Agent Systems, Volume 15, number 1, August 2007, 91-108, Springer Netherlands
-
(2007)
Autonomous Agents and Multi-Agent Systems
, vol.15
, Issue.1
, pp. 91-108
-
-
BANERJEE, D.1
Sen, S.2
-
8
-
-
0036531878
-
Multiagent learning using a variable learning rate
-
BOWLING M and Veloso M (2002) Multiagent learning using a variable learning rate. Artificial Intelligence, 136:215-250.
-
(2002)
Artificial Intelligence
, vol.136
, pp. 215-250
-
-
BOWLING, M.1
Veloso, M.2
-
9
-
-
0004251138
-
-
Cambridge University Press, Cambridge: UK
-
BRAMS S J (1994) Theory of Moves. Cambridge University Press, Cambridge: UK.
-
(1994)
Theory of Moves
-
-
BRAMS, S.J.1
-
13
-
-
0002819121
-
A comparative analysis of selection schemes used in genetic algorithms
-
Rawlins, G. J, ed, San Mateo, CA: Morgan Kaufman
-
DEB K and Goldberg D (1991) A comparative analysis of selection schemes used in genetic algorithms. In Rawlins, G. J., ed., Foundations of Genetic Algorithms, 69-93. San Mateo, CA: Morgan Kaufman.
-
(1991)
Foundations of Genetic Algorithms
, pp. 69-93
-
-
DEB, K.1
Goldberg, D.2
-
17
-
-
0000929496
-
Multiagent reinforcement learning: Theoretical framework and an algorithm
-
Shavlik, J, ed, San Francisco, CA: Morgan Kaufmann
-
HU J and Wellman M P (1998) Multiagent reinforcement learning: Theoretical framework and an algorithm. In Shavlik, J., ed., Proceedings of the Fifteenth International Conference on Machine Learning, 242-250. San Francisco, CA: Morgan Kaufmann.
-
(1998)
Proceedings of the Fifteenth International Conference on Machine Learning
, pp. 242-250
-
-
HU, J.1
Wellman, M.P.2
-
18
-
-
34547370764
-
-
JAFARI A, Greenwald A, Gondek D and Ercal G (2001) On no-regret learning, fictitious play and Nash equilibrium. In Proceedings of the Eighteenth International Conference on Machine Learning, 226-233, San Francisco, CA: Morgan Kaufmann.
-
JAFARI A, Greenwald A, Gondek D and Ercal G (2001) On no-regret learning, fictitious play and Nash equilibrium. In Proceedings of the Eighteenth International Conference on Machine Learning, 226-233, San Francisco, CA: Morgan Kaufmann.
-
-
-
-
23
-
-
34547377517
-
-
MCKELVEY R D, McLennan A M, and Turocy T L (2005) Gambit: Software Tools for Game Theory, Version 0.2005.06.13
-
MCKELVEY R D, McLennan A M, and Turocy T L (2005) Gambit: Software Tools for Game Theory, Version 0.2005.06.13. http://econweb.tamu.edu/gambit
-
-
-
-
25
-
-
0000940249
-
Multiagent Reinforcement Learning in the Iterated Prisoner's Dilemma
-
SANDHOLM T and Crites R (1995) Multiagent Reinforcement Learning in the Iterated Prisoner's Dilemma. In Biosystems 37(1:2).
-
(1995)
Biosystems
, vol.37
, Issue.1
, pp. 2
-
-
SANDHOLM, T.1
Crites, R.2
|