메뉴 건너뛰기




Volumn 67, Issue 1-2, 2007, Pages 45-76

A general criterion and an algorithmic framework for learning in multi-agent systems

Author keywords

Game theory; Machine learning; Multi agent systems

Indexed keywords

BOUNDED MEMORY; COMPREHENSIVE COMPUTER TESTING;

EID: 34147097403     PISSN: 08856125     EISSN: 15730565     Source Type: Journal    
DOI: 10.1007/s10994-006-9643-2     Document Type: Article
Times cited : (40)

References (34)
  • 4
    • 0036531878 scopus 로고    scopus 로고
    • Multiagent learning using a variable learning rate
    • Bowling, M., & Veloso, M. (2002a). Multiagent learning using a variable learning rate. Artificial Intelligence, 136, 215-250.
    • (2002) Artificial Intelligence , vol.136 , pp. 215-250
    • Bowling, M.1    Veloso, M.2
  • 5
    • 34147101492 scopus 로고    scopus 로고
    • Existence of multiagent equilibria with limited agents. Technical report CMU-CS-02-104, Computer Science Department, Carnegie Mellon University
    • Bowling, M., & Veloso, M.M. (2002b). Existence of multiagent equilibria with limited agents. Technical report CMU-CS-02-104, Computer Science Department, Carnegie Mellon University.
    • (2002)
    • Bowling, M.1    Veloso, M.M.2
  • 6
  • 7
    • 0002672918 scopus 로고
    • Iterative solution of games by fictitious play
    • New York: John Wiley and Sons
    • Brown, G. (1951). Iterative solution of games by fictitious play. In Activity Analysis of Production and Allocation (pp. 374-376). New York: John Wiley and Sons.
    • (1951) Activity Analysis of Production and Allocation , pp. 374-376
    • Brown, G.1
  • 12
    • 1942421183 scopus 로고    scopus 로고
    • Conitzer, V., & Sandholm, T. (2003). Awesome: A general multiagent learning algorithm that converges in selfplay and learns a best response against stationary opponents. In Proceedings of the Twentieth International Conference on Machine Learning (pp. 83-90).
    • Conitzer, V., & Sandholm, T. (2003). Awesome: A general multiagent learning algorithm that converges in selfplay and learns a best response against stationary opponents. In Proceedings of the Twentieth International Conference on Machine Learning (pp. 83-90).
  • 14
    • 0002476325 scopus 로고    scopus 로고
    • Regret in the on-line decision problem
    • Foster, D., & Vohra, R. (1999). Regret in the on-line decision problem. Games and Economic Behavior, 29, 7-36.
    • (1999) Games and Economic Behavior , vol.29 , pp. 7-36
    • Foster, D.1    Vohra, R.2
  • 17
    • 0001976283 scopus 로고
    • Approximation to Bayes risk in repeated plays
    • Hannan, J. F. (1957). Approximation to Bayes risk in repeated plays. Contributions to the Theory of Games, 3, 97-139.
    • (1957) Contributions to the Theory of Games , vol.3 , pp. 97-139
    • Hannan, J.F.1
  • 18
    • 0000908510 scopus 로고    scopus 로고
    • A simple adaptive procedure leading to correlated equilibrium
    • Hart, S., & Mas-Colell, A. (2000). A simple adaptive procedure leading to correlated equilibrium. Econometrica, 68, 1127-1150.
    • (2000) Econometrica , vol.68 , pp. 1127-1150
    • Hart, S.1    Mas-Colell, A.2
  • 20
    • 0000221289 scopus 로고
    • Rational learning leads to Nash equilibrium
    • Kalai, E., & Lehrer, E. (1993). Rational learning leads to Nash equilibrium. Econometrica, 61(5), 1019-1045.
    • (1993) Econometrica , vol.61 , Issue.5 , pp. 1019-1045
    • Kalai, E.1    Lehrer, E.2
  • 24
    • 0000614213 scopus 로고
    • Bounded complexity justifies cooperation in finitely repeated prisoner's dilemma
    • Neyman, A. (1985). Bounded complexity justifies cooperation in finitely repeated prisoner's dilemma. Economic Letters (pp. 227-229).
    • (1985) Economic Letters , pp. 227-229
    • Neyman, A.1
  • 32
    • 0034205975 scopus 로고    scopus 로고
    • Multiagent systems: A survey from a machine learning perspective
    • Stone, P., & Veloso, M. (2000). Multiagent systems: A survey from a machine learning perspective. Autonomous Robots, 8(3).
    • (2000) Autonomous Robots , vol.8 , Issue.3
    • Stone, P.1    Veloso, M.2
  • 33
    • 34249833101 scopus 로고
    • Technical note: Q-learning
    • Watkins, C., & Dayan, P. (1992). Technical note: Q-learning. Machine Learning, 8(3/4), 279-292.
    • (1992) Machine Learning , vol.8 , Issue.3-4 , pp. 279-292
    • Watkins, C.1    Dayan, P.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.