메뉴 건너뛰기




Volumn 1, Issue , 2003, Pages 83-90

AWESOME: A General Multiagent Learning Algorithm that Converges in Self-Play and Learns a Best Response Against Stationary Opponents

Author keywords

[No Author keywords available]

Indexed keywords

NASH EQUILIBRIUM; STATIONARY OPPONENTS;

EID: 1942421183     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (62)

References (17)
  • 1
    • 0036531878 scopus 로고    scopus 로고
    • Multiagent learning using a variable learning rate
    • Bowling, M., & Veloso, M. (2002). Multiagent learning using a variable learning rate. Artificial Intelligence, 136, 215-250.
    • (2002) Artificial Intelligence , vol.136 , pp. 215-250
    • Bowling, M.1    Veloso, M.2
  • 2
    • 0242684981 scopus 로고    scopus 로고
    • Discussion paper 216. Center for Rationality, The Hebrew University of Jerusalem, Israel
    • Cahn, A. (2000). General procedures leading to correlated equilibria. Discussion paper 216. Center for Rationality, The Hebrew University of Jerusalem, Israel.
    • (2000) General Procedures Leading to Correlated Equilibria
    • Cahn, A.1
  • 5
    • 0031256578 scopus 로고    scopus 로고
    • Calibrated learning and correlated equilibrium
    • Foster, D. P., & Vohra, R. V. (1997). Calibrated learning and correlated equilibrium. Games and Economic Behavior, 21, 40-55.
    • (1997) Games and Economic Behavior , vol.21 , pp. 40-55
    • Foster, D.P.1    Vohra, R.V.2
  • 8
    • 0000908510 scopus 로고    scopus 로고
    • A simple adaptive procedure leading to correlated equilibrium
    • Hart, S., & Mas-Colell, A. (2000). A simple adaptive procedure leading to correlated equilibrium. Econometrica, 68, 1127-1150.
    • (2000) Econometrica , vol.68 , pp. 1127-1150
    • Hart, S.1    Mas-Colell, A.2
  • 9
    • 0000929496 scopus 로고    scopus 로고
    • Multiagent reinforcement learning: Theoretical framework and an algorithm
    • Hu, J., & Wellman, M. P. (1998). Multiagent reinforcement learning: Theoretical framework and an algorithm. International Conference on Machine Learning (pp. 242-250).
    • (1998) International Conference on Machine Learning , pp. 242-250
    • Hu, J.1    Wellman, M.P.2
  • 11
    • 85149834820 scopus 로고
    • Markov games as a framework for multiagent reinforcement learning
    • Littman, M. L. (1994). Markov games as a framework for multiagent reinforcement learning. International Conference on Machine Learning (pp. 157-163).
    • (1994) International Conference on Machine Learning , pp. 157-163
    • Littman, M.L.1
  • 12
    • 0034836562 scopus 로고    scopus 로고
    • Algorithms, games and the Internet
    • Papadimitriou, C. (2001). Algorithms, games and the Internet. STOC (pp. 749-753).
    • (2001) STOC , pp. 749-753
    • Papadimitriou, C.1
  • 15
    • 85152198941 scopus 로고
    • Multi-agent reinforcement learning: Independent vs. cooperative agents
    • Tan, M. (1993). Multi-agent reinforcement learning: Independent vs. cooperative agents. International Conference on Machine Learning (pp. 330-337).
    • (1993) International Conference on Machine Learning , pp. 330-337
    • Tan, M.1
  • 16
    • 0003892527 scopus 로고
    • Stochastic games with finite state and action spaces
    • Vrieze, O. (1987). Stochastic games with finite state and action spaces. CWI Tracts.
    • (1987) CWI Tracts
    • Vrieze, O.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.