메뉴 건너뛰기




Volumn , Issue , 2010, Pages 359-366

Feature selection as a one-player game

Author keywords

[No Author keywords available]

Indexed keywords

ARTIFICIAL INTELLIGENCE; REINFORCEMENT LEARNING; TREES (MATHEMATICS);

EID: 77956510446     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (78)

References (29)
  • 2
    • 0036568025 scopus 로고    scopus 로고
    • Finite-time analysis of the Multiarmed Bandit problem
    • Auer, P., Cesa-Bianchi, N. and Fischer, P. Finite-time analysis of the Multiarmed Bandit problem. Mach. Learn., 47(2-3):235-256, 2002.
    • (2002) Mach. Learn. , vol.47 , Issue.2-3 , pp. 235-256
    • Auer, P.1    Cesa-Bianchi, N.2    Fischer, P.3
  • 3
    • 84858766876 scopus 로고    scopus 로고
    • Exploring large feature spaces with Hierarchical multiple kernel learning
    • Bach, F. Exploring large feature spaces with Hierarchical Multiple Kernel Learning. In NIPS'08, pp. 105-112, 2008.
    • (2008) NIPS'08 , pp. 105-112
    • Bach, F.1
  • 5
    • 34547688866 scopus 로고    scopus 로고
    • Compression-based averaging of selective Naive Bayes classifiers
    • Boullé, M. Compression-based averaging of selective Naive Bayes classifiers. J. Mach. Learn. Res., 8:1659-1685, 2007.
    • (2007) J. Mach. Learn. Res. , vol.8 , pp. 1659-1685
    • Boullé, M.1
  • 9
    • 38049037928 scopus 로고    scopus 로고
    • Efficient selectivity and backup operators in Monte-carlo tree search
    • Coulom, R. Efficient selectivity and backup operators in Monte-Carlo tree search. In Computers and Games, pp. 72-83, 2006.
    • (2006) Computers and Games , pp. 72-83
    • Coulom, R.1
  • 10
    • 71149107214 scopus 로고    scopus 로고
    • Bandit-based optimization on graphs with application to library performance tuning
    • de Mesmay, F., Rimmel, A., Voronenko, Y. and Püschel, M. Bandit-based optimization on graphs with application to library performance tuning. In ICML'09, pp. 729-736, 2009.
    • (2009) ICML'09 , pp. 729-736
    • De Mesmay, F.1    Rimmel, A.2    Voronenko, Y.3    Püschel, M.4
  • 12
    • 0034592781 scopus 로고    scopus 로고
    • Data selection for support vector machine classifiers
    • Fung, G. and Mangasarian, O. L. Data Selection for Support Vector Machine Classifiers. In KDD'00, pp. 64-70, 2000.
    • (2000) KDD'00 , pp. 64-70
    • Fung, G.1    Mangasarian, O.L.2
  • 13
    • 34547990649 scopus 로고    scopus 로고
    • Combining online and offline knowledge in UCT
    • Gelly, S. and Silver, D. Combining online and offline knowledge in UCT. In ICML'07, pp. 273-280, 2007.
    • (2007) ICML'07 , pp. 273-280
    • Gelly, S.1    Silver, D.2
  • 14
    • 0036161259 scopus 로고    scopus 로고
    • Gene selection for cancer classification using support vector machines
    • Guyon, I., Weston, J., Barnhill, S. and Vapnik, V. Gene selection for cancer classification using Support Vector Machines. Mach. Learn., 46(1-3):389-422, 2002.
    • (2002) Mach. Learn. , vol.46 , Issue.1-3 , pp. 389-422
    • Guyon, I.1    Weston, J.2    Barnhill, S.3    Vapnik, V.4
  • 15
    • 33646391384 scopus 로고    scopus 로고
    • Result analysis of the NIPS 2003 feature selection challenge
    • Guyon, I., Gunn, S. R., Ben-Hur, A. and Dror, G. Result analysis of the NIPS 2003 Feature Selection challenge. In NIPS'04, pp. 545-552, 2004.
    • (2004) NIPS'04 , pp. 545-552
    • Guyon, I.1    Gunn, S.R.2    Ben-Hur, A.3    Dror, G.4
  • 16
    • 34250885083 scopus 로고    scopus 로고
    • Competitive baseline methods set new standards for the NIPS 2003 feature selection bench-mark
    • Guyon, I., Li, J., Maxier, T., Pletscher, P. A., Schneider, G. and Uhr, M. Competitive baseline methods set new standards for the NIPS 2003 feature selection benchmark. Pattern Recogn. Lett, 28(12): 1438-1444, 2007.
    • (2007) Pattern Recogn. Lett , vol.28 , Issue.12 , pp. 1438-1444
    • Guyon, I.1    Li, J.2    Maxier, T.3    Pletscher, P.A.4    Schneider, G.5    Uhr, M.6
  • 17
    • 85065703189 scopus 로고    scopus 로고
    • Correlation-based Feature Selection for discrete and numeric class Machine Learning
    • Hall, M. A. Correlation-based Feature Selection for discrete and numeric class Machine Learning. In ICML '00, pp. 359-366, 2000.
    • (2000) ICML '00 , pp. 359-366
    • Hall, M.A.1
  • 18
    • 71149092858 scopus 로고    scopus 로고
    • Partially supervised Feature Selection with regularized linear models
    • Helleputte, T. and Dupont, P. Partially supervised Feature Selection with regularized linear models. In ICML'09, pp. 409-416, 2009.
    • (2009) ICML'09 , pp. 409-416
    • Helleputte, T.1    Dupont, P.2
  • 19
    • 85146422424 scopus 로고
    • A practical approach to feature selection
    • Kira, K. and Rendeli, L. A. A practical approach to feature selection. In ML '92, pp. 249-256, 1992.
    • (1992) ML '92 , pp. 249-256
    • Kira, K.1    Rendeli, L.A.2
  • 20
    • 33750293964 scopus 로고    scopus 로고
    • Bandit based Monte-Carlo planning
    • Kocsis, L. and Szepesvári, C. Bandit based Monte-Carlo planning. In ECML'06, pp. 282-293, 2006.
    • (2006) ECML'06 , pp. 282-293
    • Kocsis, L.1    Szepesvári, C.2
  • 21
    • 77956496569 scopus 로고    scopus 로고
    • Toward provably correct feature selection in arbitrary domains
    • Margaritis, D. Toward provably correct Feature Selection in arbitrary domains. In NIPS'09, pp. 1240-1248, 2009.
    • (2009) NIPS'09 , pp. 1240-1248
    • Margaritis, D.1
  • 22
    • 33745834365 scopus 로고    scopus 로고
    • Identifying feature relevance using a Random Forest
    • Rogers, J. and Gunn, S. R. Identifying feature relevance using a Random Forest. In SLSFS, pp. 173-184, 2005.
    • (2005) SLSFS , pp. 173-184
    • Rogers, J.1    Gunn, S.R.2
  • 23
    • 70349956665 scopus 로고    scopus 로고
    • Boosting active learning to optimality: A tractable Monte-Carlo, Billiard-based algorithm
    • Rolet, P., Sebag, M., and Teytaud, O. Boosting Active Learning to optimality: a tractable Monte-Carlo, Billiard-based algorithm. In ECML'09, pp. 302-317, 2009.
    • (2009) ECML'09 , pp. 302-317
    • Rolet, P.1    Sebag, M.2    Teytaud, O.3
  • 24
    • 36849082989 scopus 로고    scopus 로고
    • Feature selection via sensitivity analysis of SVM probabilistic outputs
    • Shen, K. Q., Ong, C. J., Li, X. P. and Wilder-Smith, E. P. V. Feature selection via sensitivity analysis of SVM probabilistic outputs. Mach. Learn., 70(1): 1-20, 2008.
    • (2008) Mach. Learn. , vol.70 , Issue.1 , pp. 1-20
    • Shen, K.Q.1    Ong, C.J.2    Li, X.P.3    Wilder-Smith, E.P.V.4
  • 25
    • 85194972808 scopus 로고
    • Regression shrinkage and selection via the Lasso
    • Series B
    • Tibshirani, R. Regression shrinkage and selection via the Lasso. Journal of the Royal Statistical Society, Series B, 58:267-288, 1994.
    • (1994) Journal of the Royal Statistical Society , vol.58 , pp. 267-288
    • Tibshirani, R.1
  • 26
    • 71149100224 scopus 로고    scopus 로고
    • More generality in efficient Multiple Kernel Learning
    • Varrna, M. and Babu, B. R. More generality in efficient Multiple Kernel Learning. In ICML'09, pp. 1065-1072, 2009.
    • (2009) ICML'09 , pp. 1065-1072
    • Varrna, M.1    Babu, B.R.2
  • 27
    • 84863381440 scopus 로고    scopus 로고
    • Algorithms for infinitely Many-armed Bandits
    • Wang, Y., Audibert, J.Y. and Munos, R. Algorithms for infinitely Many-Armed Bandits. In NIPS08, pp. 1729-1736, 2008.
    • (2008) NIPS08 , pp. 1729-1736
    • Wang, Y.1    Audibert, J.Y.2    Munos, R.3
  • 28
    • 84863393425 scopus 로고    scopus 로고
    • Adaptive forward-backward greedy algorithm for sparse learning with linear models
    • Zhang, T. Adaptive Forward-Backward Greedy Algorithm for Sparse Learning with Linear Models. In NIPS'08, pp. 1921-1928, 2008a.
    • (2008) NIPS'08 , pp. 1921-1928
    • Zhang, T.1
  • 29
    • 84863420367 scopus 로고    scopus 로고
    • Multi-stage convex relaxation for learning with sparse regularization
    • Zhang, T. Multi-stage Convex Relaxation for Learning with Sparse Regularization. In NIPS'08, pp. 1929-1936, 2008b.
    • (2008) NIPS'08 , pp. 1929-1936
    • Zhang, T.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.