메뉴 건너뛰기




Volumn 5782 LNAI, Issue PART 2, 2009, Pages 302-317

Boosting active learning to optimality: A tractable Monte-Carlo, billiard-based algorithm

Author keywords

[No Author keywords available]

Indexed keywords

ACTIVE LEARNERS; ACTIVE LEARNING; APPLICATION DOMAINS; COMPUTATIONAL CONSTRAINTS; FINITE HORIZONS; GENERALIZATION ERROR; MONTE CARLO; MULTI ARMED BANDIT; OPTIMAL POLICIES; OPTIMALITY; PROOF OF PRINCIPLES; SAMPLING STRATEGIES; STAND -ALONE; TRAINING SETS;

EID: 70349956665     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/978-3-642-04174-7_20     Document Type: Conference Paper
Times cited : (15)

References (38)
  • 1
    • 0027582888 scopus 로고
    • Active learning using arbitrary binary valued queries
    • Kulkarni, S.R., Mitter, S.K., Tsitsiklis, J.N.: Active learning using arbitrary binary valued queries. Mach. Learn. 11(1), 23-35 (1993)
    • (1993) Mach. Learn. , vol.11 , Issue.1 , pp. 23-35
    • Kulkarni, S.R.1    Mitter, S.K.2    Tsitsiklis, J.N.3
  • 2
    • 0028424239 scopus 로고
    • Improving generalization with active learning
    • Cohn, D., Atlas, L., Ladner, R.: Improving generalization with active learning. Mach. Learn. 15(2), 201-221 (1994)
    • (1994) Mach. Learn. , vol.15 , Issue.2 , pp. 201-221
    • Cohn, D.1    Atlas, L.2    Ladner, R.3
  • 3
    • 0007696417 scopus 로고    scopus 로고
    • Less is more: Active learning with support vector machines
    • Schohn, G., Cohn, D.: Less is more: Active learning with support vector machines. Int. Conf. on Machine Learning 282, 285-286 (2000)
    • (2000) Int. Conf. on Machine Learning , vol.282 , pp. 285-286
    • Schohn, G.1    Cohn, D.2
  • 4
    • 84898947320 scopus 로고    scopus 로고
    • Analysis of a greedy active learning strategy
    • MIT Press, Cambridge
    • Dasgupta, S.: Analysis of a greedy active learning strategy. In: NIPS 17, pp. 337-344. MIT Press, Cambridge (2005)
    • (2005) NIPS , vol.17 , pp. 337-344
    • Dasgupta, S.1
  • 5
    • 84864047848 scopus 로고    scopus 로고
    • Faster rates in regression via active learning
    • MIT Press, Cambridge
    • Castro, R., Willett, R., Nowak, R.: Faster rates in regression via active learning. In: NIPS 18, pp. 179-186. MIT Press, Cambridge (2006)
    • (2006) NIPS , vol.18 , pp. 179-186
    • Castro, R.1    Willett, R.2    Nowak, R.3
  • 6
    • 33749263388 scopus 로고    scopus 로고
    • Batch mode active learning and its application to medical image classification
    • ACM, New York
    • Hoi, S.C.H., Jin, R., Zhu, J., Lyu, M.R.: Batch mode active learning and its application to medical image classification. In: Int. Conf. on Machine Learning, pp. 417-424. ACM, New York (2006)
    • (2006) Int. Conf. on Machine Learning , pp. 417-424
    • Hoi, S.C.H.1    Jin, R.2    Zhu, J.3    Lyu, M.R.4
  • 7
    • 34547983474 scopus 로고    scopus 로고
    • A bound on the label complexity of agnostic active learning
    • ACM, New York
    • Hanneke, S.: A bound on the label complexity of agnostic active learning. In: Int. Conf. on Machine Learning, pp. 353-360. ACM, New York (2007)
    • (2007) Int. Conf. on Machine Learning , pp. 353-360
    • Hanneke, S.1
  • 8
    • 33750293964 scopus 로고    scopus 로고
    • Bandit-based monte-carlo planning
    • F̈urnkranz, J., Sche.er, T., Spiliopoulou, M. (eds.) Springer, Heidelberg
    • Kocsis, L., Szepesvari, C.: Bandit-based monte-carlo planning. In: F̈urnkranz, J., Sche.er, T., Spiliopoulou, M. (eds.) ECML 2006. LNCS (LNAI), vol.4212, pp. 282-293. Springer, Heidelberg (2006)
    • (2006) ECML 2006. LNCS (LNAI) , vol.4212 , pp. 282-293
    • Kocsis, L.1    Szepesvari, C.2
  • 9
    • 34547990649 scopus 로고    scopus 로고
    • Combining online and o.ine knowledge in UCT
    • ACM, New York
    • Gelly, S., Silver, D.: Combining online and o.ine knowledge in UCT. In: Int. Conf. on Machine Learning, pp. 273-280. ACM, New York (2007)
    • (2007) Int. Conf. on Machine Learning , pp. 273-280
    • Gelly, S.1    Silver, D.2
  • 10
    • 0002536264 scopus 로고    scopus 로고
    • Playing billiards in version space
    • Ruj́an, P.: Playing billiards in version space. Neural Computation 9(1), 99-122 (1997)
    • (1997) Neural Computation , vol.9 , Issue.1 , pp. 99-122
    • Ruj́an, P.1
  • 13
    • 38049037928 scopus 로고    scopus 로고
    • Eficient selectivity and backup operators in Monte-Carlo tree search
    • Ciancarini, P., van den Herik, H.J. (eds.) Springer, Heidelberg
    • Coulom, R.: Eficient selectivity and backup operators in Monte-Carlo tree search. In: Ciancarini, P., van den Herik, H.J. (eds.) CG 2006. LNCS, vol.4630, pp. 72-83. Springer, Heidelberg (2007)
    • (2007) CG 2006. LNCS , vol.4630 , pp. 72-83
    • Coulom, R.1
  • 15
    • 84863381440 scopus 로고    scopus 로고
    • Algorithms for in.nitely many-armed bandits
    • Wang, Y., Audibert, J.Y., Munos, R.: Algorithms for in.nitely many-armed bandits. In: NIPS 21, pp. 1729-1736 (2009)
    • (2009) NIPS , vol.21 , pp. 1729-1736
    • Wang, Y.1    Audibert, J.Y.2    Munos, R.3
  • 16
  • 17
    • 0031209604 scopus 로고    scopus 로고
    • Selective sampling using the query by committee algorithm
    • Freund, Y., Seung, H.S., Shamir, E., Tishby, N.: Selective sampling using the query by committee algorithm. Mach. Learn. 28(2-3), 133-168 (1997)
    • (1997) Mach. Learn. , vol.28 , Issue.2-3 , pp. 133-168
    • Freund, Y.1    Seung, H.S.2    Shamir, E.3    Tishby, N.4
  • 19
    • 0442319140 scopus 로고    scopus 로고
    • Toward optimal active learning through sampling estimation of error reduction
    • Morgan Kaufmann, San Francisco
    • Roy, N., McCallum, A.: Toward optimal active learning through sampling estimation of error reduction. In: Int. Conf. on Machine Learning, pp. 441-448. Morgan Kaufmann, San Francisco (2001)
    • (2001) Int. Conf. on Machine Learning , pp. 441-448
    • Roy, N.1    McCallum, A.2
  • 20
    • 1242352526 scopus 로고    scopus 로고
    • Selective sampling for nearest neighbor classi.ers
    • Lindenbaum, M., Markovitch, S., Rusakov, D.: Selective sampling for nearest neighbor classi.ers. Machine Learning 54, 125-152 (2004)
    • (2004) Machine Learning , vol.54 , pp. 125-152
    • Lindenbaum, M.1    Markovitch, S.2    Rusakov, D.3
  • 21
    • 26944439047 scopus 로고    scopus 로고
    • Analysis of perceptron-based active learning
    • Auer, P., Meir, R. (eds.) Springer, Heidelberg
    • Dasgupta, S., Kalai, A.T., Monteleoni, C.: Analysis of perceptron-based active learning. In: Auer, P., Meir, R. (eds.) COLT 2005. LNCS (LNAI), vol.3559, pp. 249-263. Springer, Heidelberg (2005)
    • (2005) COLT 2005. LNCS (LNAI) , vol.3559 , pp. 249-263
    • Dasgupta, S.1    Kalai, A.T.2    Monteleoni, C.3
  • 22
    • 9444239141 scopus 로고    scopus 로고
    • Learning probabilistic linear-threshold classi.ers via selective sampling
    • ScḦolkopf, B., Warmuth, M.K. (eds.) Springer, Heidelberg
    • Cesa-Bianchi, N., Conconi, A., Gentile, C.: Learning probabilistic linear-threshold classi.ers via selective sampling. In: ScḦolkopf, B., Warmuth, M.K. (eds.) COLT/Kernel 2003. LNCS (LNAI), vol.2777, pp. 373-387. Springer, Heidelberg (2003)
    • (2003) COLT/Kernel 2003. LNCS (LNAI) , vol.2777 , pp. 373-387
    • Cesa-Bianchi, N.1    Conconi, A.2    Gentile, C.3
  • 23
    • 38049078541 scopus 로고    scopus 로고
    • Margin based active learning
    • Bshouty, N.H., Gentile, C. (eds.) Springer, Heidelberg
    • Florina Balcan, M., Broder, A., Zhang, T.: Margin based active learning. In: Bshouty, N.H., Gentile, C. (eds.) COLT. LNCS (LNAI), vol.4539, pp. 35-50. Springer, Heidelberg (2007)
    • (2007) COLT. LNCS (LNAI) , vol.4539 , pp. 35-50
    • Florina Balcan, M.1    Broder, A.2    Zhang, T.3
  • 24
    • 70349962643 scopus 로고    scopus 로고
    • Software testing by active learning for commercial games
    • Xiao, G., Southey, F., Holte, R.C., Wilkinson, D.: Software testing by active learning for commercial games. In: AAAI 2005, pp. 609-616 (2005)
    • (2005) AAAI 2005 , pp. 609-616
    • Xiao, G.1    Southey, F.2    Holte, R.C.3    Wilkinson, D.4
  • 26
    • 84938606227 scopus 로고
    • Generalized teaching dimensions and the query complexity of learning
    • ACM, New York
    • Heged̈us, T.: Generalized teaching dimensions and the query complexity of learning. In: COLT 1995, pp. 108-117. ACM, New York (1995)
    • (1995) COLT 1995 , pp. 108-117
    • Heged̈us, T.1
  • 27
    • 71049162986 scopus 로고    scopus 로고
    • Coarse sample complexity bounds for active learning
    • MIT Press, Cambridge
    • Dasgupta, S.: Coarse sample complexity bounds for active learning. In: NIPS 18, pp. 235-242. MIT Press, Cambridge (2006)
    • (2006) NIPS , vol.18 , pp. 235-242
    • Dasgupta, S.1
  • 28
    • 0028132501 scopus 로고
    • Bounds on the sample complexity of bayesian learning using information theory and the VC dimension
    • Haussler, D., Kearns, M., Schapire, R.E.: Bounds on the sample complexity of bayesian learning using information theory and the VC dimension. Mach. Learn. 14(1), 83-113 (1994)
    • (1994) Mach. Learn. , vol.14 , Issue.1 , pp. 83-113
    • Haussler, D.1    Kearns, M.2    Schapire, R.E.3
  • 29
    • 0001025418 scopus 로고
    • Bayesian interpolation
    • Mackay, D.J.C.: Bayesian interpolation. Neural Computation 4, 415-447 (1992)
    • (1992) Neural Computation , vol.4 , pp. 415-447
    • MacKay, D.J.C.1
  • 32
  • 33
    • 0041966002 scopus 로고    scopus 로고
    • Using con.dence bounds for exploitation-exploration trade-o.s
    • Auer, P.: Using con.dence bounds for exploitation-exploration trade-o.s. The Journal of Machine Learning Research 3, 397-422 (2003)
    • (2003) The Journal of Machine Learning Research , vol.3 , pp. 397-422
    • Auer, P.1
  • 34
    • 34547981323 scopus 로고    scopus 로고
    • Modifications of UCT and sequence-like simulations for Monte- Carlo Go
    • Honolulu, Hawaii
    • Wang, Y., Gelly, S.: Modifications of UCT and sequence-like simulations for Monte- Carlo Go. In: IEEE Symposium on Computational Intelligence and Games, Honolulu, Hawaii, pp. 175-182 (2007)
    • (2007) IEEE Symposium on Computational Intelligence and Games , pp. 175-182
    • Wang, Y.1    Gelly, S.2
  • 37
    • 33750293964 scopus 로고    scopus 로고
    • Bandit based monte-carlo planning
    • F̈urnkranz, J., Sche.er, T., Spiliopoulou, M. (eds.) Springer, Heidelberg
    • Kocsis, L., Szepesvari, C.: Bandit Based Monte-Carlo Planning. In: F̈urnkranz, J., Sche.er, T., Spiliopoulou, M. (eds.) ECML 2006. LNCS (LNAI), vol.4212, pp. 282-293. Springer, Heidelberg (2006)
    • (2006) ECML 2006. LNCS (LNAI) , vol.4212 , pp. 282-293
    • Kocsis, L.1    Szepesvari, C.2
  • 38
    • 0031624445 scopus 로고    scopus 로고
    • Large margin classification using the perceptron algorithm
    • Morgan Kaufmann, San Francisco
    • Freund, Y., Schapire, R.: Large margin classification using the perceptron algorithm. In: COLT 1998. Morgan Kaufmann, San Francisco (1998)
    • COLT 1998 , vol.1998
    • Freund, Y.1    Schapire, R.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.