-
1
-
-
0027582888
-
Active learning using arbitrary binary valued queries
-
Kulkarni, S.R., Mitter, S.K., Tsitsiklis, J.N.: Active learning using arbitrary binary valued queries. Mach. Learn. 11(1), 23-35 (1993)
-
(1993)
Mach. Learn.
, vol.11
, Issue.1
, pp. 23-35
-
-
Kulkarni, S.R.1
Mitter, S.K.2
Tsitsiklis, J.N.3
-
2
-
-
0028424239
-
Improving generalization with active learning
-
Cohn, D., Atlas, L., Ladner, R.: Improving generalization with active learning. Mach. Learn. 15(2), 201-221 (1994)
-
(1994)
Mach. Learn.
, vol.15
, Issue.2
, pp. 201-221
-
-
Cohn, D.1
Atlas, L.2
Ladner, R.3
-
3
-
-
0007696417
-
Less is more: Active learning with support vector machines
-
Schohn, G., Cohn, D.: Less is more: Active learning with support vector machines. Int. Conf. on Machine Learning 282, 285-286 (2000)
-
(2000)
Int. Conf. on Machine Learning
, vol.282
, pp. 285-286
-
-
Schohn, G.1
Cohn, D.2
-
4
-
-
84898947320
-
Analysis of a greedy active learning strategy
-
MIT Press, Cambridge
-
Dasgupta, S.: Analysis of a greedy active learning strategy. In: NIPS 17, pp. 337-344. MIT Press, Cambridge (2005)
-
(2005)
NIPS
, vol.17
, pp. 337-344
-
-
Dasgupta, S.1
-
5
-
-
84864047848
-
Faster rates in regression via active learning
-
MIT Press, Cambridge
-
Castro, R., Willett, R., Nowak, R.: Faster rates in regression via active learning. In: NIPS 18, pp. 179-186. MIT Press, Cambridge (2006)
-
(2006)
NIPS
, vol.18
, pp. 179-186
-
-
Castro, R.1
Willett, R.2
Nowak, R.3
-
6
-
-
33749263388
-
Batch mode active learning and its application to medical image classification
-
ACM, New York
-
Hoi, S.C.H., Jin, R., Zhu, J., Lyu, M.R.: Batch mode active learning and its application to medical image classification. In: Int. Conf. on Machine Learning, pp. 417-424. ACM, New York (2006)
-
(2006)
Int. Conf. on Machine Learning
, pp. 417-424
-
-
Hoi, S.C.H.1
Jin, R.2
Zhu, J.3
Lyu, M.R.4
-
7
-
-
34547983474
-
A bound on the label complexity of agnostic active learning
-
ACM, New York
-
Hanneke, S.: A bound on the label complexity of agnostic active learning. In: Int. Conf. on Machine Learning, pp. 353-360. ACM, New York (2007)
-
(2007)
Int. Conf. on Machine Learning
, pp. 353-360
-
-
Hanneke, S.1
-
8
-
-
33750293964
-
Bandit-based monte-carlo planning
-
F̈urnkranz, J., Sche.er, T., Spiliopoulou, M. (eds.) Springer, Heidelberg
-
Kocsis, L., Szepesvari, C.: Bandit-based monte-carlo planning. In: F̈urnkranz, J., Sche.er, T., Spiliopoulou, M. (eds.) ECML 2006. LNCS (LNAI), vol.4212, pp. 282-293. Springer, Heidelberg (2006)
-
(2006)
ECML 2006. LNCS (LNAI)
, vol.4212
, pp. 282-293
-
-
Kocsis, L.1
Szepesvari, C.2
-
9
-
-
34547990649
-
Combining online and o.ine knowledge in UCT
-
ACM, New York
-
Gelly, S., Silver, D.: Combining online and o.ine knowledge in UCT. In: Int. Conf. on Machine Learning, pp. 273-280. ACM, New York (2007)
-
(2007)
Int. Conf. on Machine Learning
, pp. 273-280
-
-
Gelly, S.1
Silver, D.2
-
10
-
-
0002536264
-
Playing billiards in version space
-
Ruj́an, P.: Playing billiards in version space. Neural Computation 9(1), 99-122 (1997)
-
(1997)
Neural Computation
, vol.9
, Issue.1
, pp. 99-122
-
-
Ruj́an, P.1
-
11
-
-
0000631731
-
Bayes point machines
-
Herbrich, R., Graepel, T., Campbell, C.: Bayes point machines. Journal of Machine Learning Research 1, 245-279 (2001)
-
(2001)
Journal of Machine Learning Research
, vol.1
, pp. 245-279
-
-
Herbrich, R.1
Graepel, T.2
Campbell, C.3
-
12
-
-
0037365194
-
Support vector machines for active learning in the drug discovery process
-
Warmuth, M.K., Liao, J., R̈atsch, G., Mathieson, M., Putta, S., Lemmen, C.: Support vector machines for active learning in the drug discovery process. Journal of Chemical Information Sciences 43, 667-673 (2003)
-
(2003)
Journal of Chemical Information Sciences
, vol.43
, pp. 667-673
-
-
Warmuth, M.K.1
Liao, J.2
R̈atsch, G.3
Mathieson, M.4
Putta, S.5
Lemmen, C.6
-
13
-
-
38049037928
-
Eficient selectivity and backup operators in Monte-Carlo tree search
-
Ciancarini, P., van den Herik, H.J. (eds.) Springer, Heidelberg
-
Coulom, R.: Eficient selectivity and backup operators in Monte-Carlo tree search. In: Ciancarini, P., van den Herik, H.J. (eds.) CG 2006. LNCS, vol.4630, pp. 72-83. Springer, Heidelberg (2007)
-
(2007)
CG 2006. LNCS
, vol.4630
, pp. 72-83
-
-
Coulom, R.1
-
14
-
-
67650687540
-
Progressive strategies for Monte-Carlo tree search
-
Wang, P., et al. (eds.) World Scientific Publishing, Singapore
-
Chaslot, G., Winands, M., Uiterwijk, J., van den Herik, H., Bouzy, B.: Progressive strategies for Monte-Carlo tree search. In: Wang, P., et al. (eds.) Proc. of the 10th Joint Conf. on Information Sciences, pp. 655-661. World Scientific Publishing, Singapore (2007)
-
(2007)
Proc. of the 10th Joint Conf. on Information Sciences
, pp. 655-661
-
-
Chaslot, G.1
Winands, M.2
Uiterwijk, J.3
Van Den Herik, H.4
Bouzy, B.5
-
15
-
-
84863381440
-
Algorithms for in.nitely many-armed bandits
-
Wang, Y., Audibert, J.Y., Munos, R.: Algorithms for in.nitely many-armed bandits. In: NIPS 21, pp. 1729-1736 (2009)
-
(2009)
NIPS
, vol.21
, pp. 1729-1736
-
-
Wang, Y.1
Audibert, J.Y.2
Munos, R.3
-
16
-
-
0026981853
-
Query by committee
-
ACM, New York
-
Seung, H.S., Opper, M., Sompolinsky, H.: Query by committee. In: COLT 1992, pp. 287-294. ACM, New York (1992)
-
(1992)
COLT 1992
, pp. 287-294
-
-
Seung, H.S.1
Opper, M.2
Sompolinsky, H.3
-
17
-
-
0031209604
-
Selective sampling using the query by committee algorithm
-
Freund, Y., Seung, H.S., Shamir, E., Tishby, N.: Selective sampling using the query by committee algorithm. Mach. Learn. 28(2-3), 133-168 (1997)
-
(1997)
Mach. Learn.
, vol.28
, Issue.2-3
, pp. 133-168
-
-
Freund, Y.1
Seung, H.S.2
Shamir, E.3
Tishby, N.4
-
18
-
-
0029679131
-
Active learning with statistical models
-
Cohn, D., Ghahramani, Z., Jordan, M.: Active Learning with Statistical Models. Journal of Arti.cial Intelligence Research 4, 129-145 (1996)
-
(1996)
Journal of Arti.cial Intelligence Research
, vol.4
, pp. 129-145
-
-
Cohn, D.1
Ghahramani, Z.2
Jordan, M.3
-
19
-
-
0442319140
-
Toward optimal active learning through sampling estimation of error reduction
-
Morgan Kaufmann, San Francisco
-
Roy, N., McCallum, A.: Toward optimal active learning through sampling estimation of error reduction. In: Int. Conf. on Machine Learning, pp. 441-448. Morgan Kaufmann, San Francisco (2001)
-
(2001)
Int. Conf. on Machine Learning
, pp. 441-448
-
-
Roy, N.1
McCallum, A.2
-
20
-
-
1242352526
-
Selective sampling for nearest neighbor classi.ers
-
Lindenbaum, M., Markovitch, S., Rusakov, D.: Selective sampling for nearest neighbor classi.ers. Machine Learning 54, 125-152 (2004)
-
(2004)
Machine Learning
, vol.54
, pp. 125-152
-
-
Lindenbaum, M.1
Markovitch, S.2
Rusakov, D.3
-
21
-
-
26944439047
-
Analysis of perceptron-based active learning
-
Auer, P., Meir, R. (eds.) Springer, Heidelberg
-
Dasgupta, S., Kalai, A.T., Monteleoni, C.: Analysis of perceptron-based active learning. In: Auer, P., Meir, R. (eds.) COLT 2005. LNCS (LNAI), vol.3559, pp. 249-263. Springer, Heidelberg (2005)
-
(2005)
COLT 2005. LNCS (LNAI)
, vol.3559
, pp. 249-263
-
-
Dasgupta, S.1
Kalai, A.T.2
Monteleoni, C.3
-
22
-
-
9444239141
-
Learning probabilistic linear-threshold classi.ers via selective sampling
-
ScḦolkopf, B., Warmuth, M.K. (eds.) Springer, Heidelberg
-
Cesa-Bianchi, N., Conconi, A., Gentile, C.: Learning probabilistic linear-threshold classi.ers via selective sampling. In: ScḦolkopf, B., Warmuth, M.K. (eds.) COLT/Kernel 2003. LNCS (LNAI), vol.2777, pp. 373-387. Springer, Heidelberg (2003)
-
(2003)
COLT/Kernel 2003. LNCS (LNAI)
, vol.2777
, pp. 373-387
-
-
Cesa-Bianchi, N.1
Conconi, A.2
Gentile, C.3
-
23
-
-
38049078541
-
Margin based active learning
-
Bshouty, N.H., Gentile, C. (eds.) Springer, Heidelberg
-
Florina Balcan, M., Broder, A., Zhang, T.: Margin based active learning. In: Bshouty, N.H., Gentile, C. (eds.) COLT. LNCS (LNAI), vol.4539, pp. 35-50. Springer, Heidelberg (2007)
-
(2007)
COLT. LNCS (LNAI)
, vol.4539
, pp. 35-50
-
-
Florina Balcan, M.1
Broder, A.2
Zhang, T.3
-
24
-
-
70349962643
-
Software testing by active learning for commercial games
-
Xiao, G., Southey, F., Holte, R.C., Wilkinson, D.: Software testing by active learning for commercial games. In: AAAI 2005, pp. 609-616 (2005)
-
(2005)
AAAI 2005
, pp. 609-616
-
-
Xiao, G.1
Southey, F.2
Holte, R.C.3
Wilkinson, D.4
-
26
-
-
84938606227
-
Generalized teaching dimensions and the query complexity of learning
-
ACM, New York
-
Heged̈us, T.: Generalized teaching dimensions and the query complexity of learning. In: COLT 1995, pp. 108-117. ACM, New York (1995)
-
(1995)
COLT 1995
, pp. 108-117
-
-
Heged̈us, T.1
-
27
-
-
71049162986
-
Coarse sample complexity bounds for active learning
-
MIT Press, Cambridge
-
Dasgupta, S.: Coarse sample complexity bounds for active learning. In: NIPS 18, pp. 235-242. MIT Press, Cambridge (2006)
-
(2006)
NIPS
, vol.18
, pp. 235-242
-
-
Dasgupta, S.1
-
28
-
-
0028132501
-
Bounds on the sample complexity of bayesian learning using information theory and the VC dimension
-
Haussler, D., Kearns, M., Schapire, R.E.: Bounds on the sample complexity of bayesian learning using information theory and the VC dimension. Mach. Learn. 14(1), 83-113 (1994)
-
(1994)
Mach. Learn.
, vol.14
, Issue.1
, pp. 83-113
-
-
Haussler, D.1
Kearns, M.2
Schapire, R.E.3
-
29
-
-
0001025418
-
Bayesian interpolation
-
Mackay, D.J.C.: Bayesian interpolation. Neural Computation 4, 415-447 (1992)
-
(1992)
Neural Computation
, vol.4
, pp. 415-447
-
-
MacKay, D.J.C.1
-
31
-
-
70349928051
-
-
Technical report, Laboratoire de Recherche en Informatique, Univ. Paris Sud.
-
Rolet, P., Sebag, M., Teytaud, O.: Boosting active learning to optimality: some results on a tractable Monte-Carlo, billiard-based algorithm. Technical report, Laboratoire de Recherche en Informatique, Univ. Paris Sud. (2009)
-
(2009)
Boosting Active Learning to Optimality: Some Results on A Tractable Monte-Carlo, Billiard-based Algorithm
-
-
Rolet, P.1
Sebag, M.2
Teytaud, O.3
-
32
-
-
85012688561
-
-
Princeton Univ. Press Princeton
-
Bellman, R.: Dynamic Programming. Princeton Univ. Press, Princeton (1957)
-
(1957)
Dynamic Programming
-
-
Bellman, R.1
-
33
-
-
0041966002
-
Using con.dence bounds for exploitation-exploration trade-o.s
-
Auer, P.: Using con.dence bounds for exploitation-exploration trade-o.s. The Journal of Machine Learning Research 3, 397-422 (2003)
-
(2003)
The Journal of Machine Learning Research
, vol.3
, pp. 397-422
-
-
Auer, P.1
-
34
-
-
34547981323
-
Modifications of UCT and sequence-like simulations for Monte- Carlo Go
-
Honolulu, Hawaii
-
Wang, Y., Gelly, S.: Modifications of UCT and sequence-like simulations for Monte- Carlo Go. In: IEEE Symposium on Computational Intelligence and Games, Honolulu, Hawaii, pp. 175-182 (2007)
-
(2007)
IEEE Symposium on Computational Intelligence and Games
, pp. 175-182
-
-
Wang, Y.1
Gelly, S.2
-
36
-
-
58849088580
-
Billiards in a General Domain with Random Reffections
-
Comets, F., Popov, S., ScḦutz, G.M., Vachkovskaia, M.: Billiards in a General Domain with Random Reffections. Archive for Rational Mechanics and Analysis 191, 497-537 (2009)
-
(2009)
Archive for Rational Mechanics and Analysis
, vol.191
, pp. 497-537
-
-
Comets, F.1
Popov, S.2
Scḧutz, G.M.3
Vachkovskaia, M.4
-
37
-
-
33750293964
-
Bandit based monte-carlo planning
-
F̈urnkranz, J., Sche.er, T., Spiliopoulou, M. (eds.) Springer, Heidelberg
-
Kocsis, L., Szepesvari, C.: Bandit Based Monte-Carlo Planning. In: F̈urnkranz, J., Sche.er, T., Spiliopoulou, M. (eds.) ECML 2006. LNCS (LNAI), vol.4212, pp. 282-293. Springer, Heidelberg (2006)
-
(2006)
ECML 2006. LNCS (LNAI)
, vol.4212
, pp. 282-293
-
-
Kocsis, L.1
Szepesvari, C.2
-
38
-
-
0031624445
-
Large margin classification using the perceptron algorithm
-
Morgan Kaufmann, San Francisco
-
Freund, Y., Schapire, R.: Large margin classification using the perceptron algorithm. In: COLT 1998. Morgan Kaufmann, San Francisco (1998)
-
COLT 1998
, vol.1998
-
-
Freund, Y.1
Schapire, R.2
|