메뉴 건너뛰기




Volumn 9, Issue 1, 2010, Pages

Lasso logistic regression, Gsoft and the cyclic coordinate descent algorithm: Application to gene expression data

Author keywords

CCD algorithm; gene expression; GSoft; lasso; logistic regression; optimization; penalized regression

Indexed keywords

ALGORITHM; ARTICLE; COLON; CYCLIC COORDINATE DESCENT ALGORITHM; GENE EXPRESSION; GENERALIZED SOFT THRESHOLD ESTIMATOR; LEUKEMIA; LOGISTIC REGRESSION ANALYSIS; PHENOTYPE; STATISTICAL ANALYSIS; COLON TUMOR; DNA MICROARRAY; FACTUAL DATABASE; GENE EXPRESSION PROFILING; GENETICS; METHODOLOGY; STATISTICAL MODEL;

EID: 77956417185     PISSN: None     EISSN: 15446115     Source Type: Journal    
DOI: 10.2202/1544-6115.1536     Document Type: Article
Times cited : (14)

References (59)
  • 1
    • 0033536012 scopus 로고    scopus 로고
    • Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays
    • Alon U., Barkai N., Notterman D., Gish K., Ybarra S., Mack D. and Levine A.J. Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays. Proceedings of the National Academy of Sciences USA, 96(12), (1999), 6745-6750.
    • (1999) Proceedings of the National Academy of Sciences USA , vol.96 , Issue.12 , pp. 6745-6750
    • Alon, U.1    Barkai, N.2    Notterman, D.3    Gish, K.4    Ybarra, S.5    MacK, D.6    Levine, A.J.7
  • 5
    • 0346252356 scopus 로고    scopus 로고
    • A CART-based approach to discover emerging patterns in microarray data
    • Boulesteix A.L., Tutz G. and Strimmer K. A CART-based approach to discover emerging patterns in microarray data. Bioinformatics, 19(18), (2003), 2465-2472.
    • (2003) Bioinformatics , vol.19 , Issue.18 , pp. 2465-2472
    • Boulesteix, A.L.1    Tutz, G.2    Strimmer, K.3
  • 6
    • 0002403935 scopus 로고
    • Block-relaxation methods in statistics
    • Bock H.H., Lenski W. and Richter M.M., editors Springer-Verlag, Berlin
    • De Leeuw J. Block-relaxation methods in statistics. In Bock H.H., Lenski W. and Richter M.M., editors, Information Systems and Data Analysis, Springer-Verlag, Berlin, (1994).
    • (1994) Information Systems and Data Analysis
    • De Leeuw, J.1
  • 7
    • 62549127689 scopus 로고    scopus 로고
    • Elastic-net regularization in learning theory
    • De Mol C., De Vito E. and Rosasco L. Elastic-net regularization in learning theory. Journal of Complexity, 25(2), (2009), 201-230.
    • (2009) Journal of Complexity , vol.25 , Issue.2 , pp. 201-230
    • De Mol, C.1    De Vito, E.2    Rosasco, L.3
  • 8
    • 12344294601 scopus 로고    scopus 로고
    • BagBoosting for tumor classification with gene expression data
    • Dettling M. BagBoosting for tumor classification with gene expression data. Bioinformatics, 20(18), (2004), 3583-3593.
    • (2004) Bioinformatics , vol.20 , Issue.18 , pp. 3583-3593
    • Dettling, M.1
  • 9
    • 4143134783 scopus 로고    scopus 로고
    • Finding predictive gene groups from microarray data
    • Dettling M. and Buhlmann P. Finding predictive gene groups from microarray data. Journal of Multivariate Analysis, 90, (2004), 106-131.
    • (2004) Journal of Multivariate Analysis , vol.90 , pp. 106-131
    • Dettling, M.1    Buhlmann, P.2
  • 10
    • 0037709918 scopus 로고    scopus 로고
    • Supervised clustering of genes
    • 0069.1-0069.15
    • Dettling M. and Buhlmann P. Supervised clustering of genes. Genome Biology, 3(12), (2002), 0069.1-0069.15.
    • (2002) Genome Biology , vol.3 , pp. 12
    • Dettling, M.1    Buhlmann, P.2
  • 11
    • 0036489046 scopus 로고    scopus 로고
    • Comparison of discrimination methods for the classification of tumors using gene expression data
    • Dudoit S., Fridlyand J. and Speed T.P. Comparison of discrimination methods for the classification of tumors using gene expression data. Journal of the American Statistical Association, 97(457), (2002), 77-87.
    • (2002) Journal of the American Statistical Association , vol.97 , Issue.457 , pp. 77-87
    • Dudoit, S.1    Fridlyand, J.2    Speed, T.P.3
  • 14
    • 1542784498 scopus 로고    scopus 로고
    • Variable selection via nonconcave penalized likelihood and its oracle properties
    • Fan J. and Li R. Variable selection via nonconcave penalized likelihood and its oracle properties. Journal of the American Statistical Association, 96(456), (2001), 1348-1360.
    • (2001) Journal of the American Statistical Association , vol.96 , Issue.456 , pp. 1348-1360
    • Fan, J.1    Li, R.2
  • 15
    • 84952149204 scopus 로고
    • A statistical view of some chemometrics tools
    • Frank I.E. and Friedman J.H. A statistical view of some chemometrics tools. Technometrics, 35(2), (1993), 109-135.
    • (1993) Technometrics , vol.35 , Issue.2 , pp. 109-135
    • Frank, I.E.1    Friedman, J.H.2
  • 18
    • 67651195543 scopus 로고    scopus 로고
    • The Split Bregman method for L1 regularized problems
    • Goldstein T. and Osher S. The Split Bregman method for L1 regularized problems. UCLA CAAM Report 08-29, (2008).
    • (2008) UCLA CAAM Report 08-29
    • Goldstein, T.1    Osher, S.2
  • 20
    • 33745561205 scopus 로고    scopus 로고
    • An introduction to variable and feature selection
    • Mar
    • Guyon I. and Elisseeff A. An introduction to variable and feature selection. Journal of Machine Learning Research, 3(Mar), (2003), 1157-1182.
    • (2003) Journal of Machine Learning Research , vol.3 , pp. 1157-1182
    • Guyon, I.1    Elisseeff, A.2
  • 21
    • 0036161259 scopus 로고    scopus 로고
    • Gene selection for cancer classification using support vector machines
    • Guyon I., Weston J., Barnhill S. and Vapnik V. Gene selection for cancer classification using support vector machines. Machine Learning, 46(1-3), (2002), 389-422.
    • (2002) Machine Learning , vol.46 , Issue.1-3 , pp. 389-422
    • Guyon, I.1    Weston, J.2    Barnhill, S.3    Vapnik, V.4
  • 23
    • 84942484786 scopus 로고
    • Ridge regression: Biased estimation for nonorthog-onal problems
    • Hoerl A.E. and Kennard R. Ridge regression: biased estimation for nonorthog-onal problems. Technometrics, 12(1), (1970), 55-67.
    • (1970) Technometrics , vol.12 , Issue.1 , pp. 55-67
    • Hoerl, A.E.1    Kennard, R.2
  • 25
    • 51049096710 scopus 로고    scopus 로고
    • Adaptive lasso for sparse high-dimensional regression models
    • Huang J., Ma S. and Zhang C.H. Adaptive lasso for sparse high-dimensional regression models. Statistica Sinica, 18(4), (2008), 1603-1618.
    • (2008) Statistica Sinica , vol.18 , Issue.4 , pp. 1603-1618
    • Huang, J.1    Ma, S.2    Zhang, C.H.3
  • 26
    • 77956398819 scopus 로고    scopus 로고
    • The iterated lasso for high-dimensional logistic regression
    • The University of Iowa
    • Huang J., Ma S. and Zhang C.H. The iterated lasso for high-dimensional logistic regression. Technical report No. 392, The University of Iowa, (2008).
    • (2008) Technical Report No. 392
    • Huang, J.1    Ma, S.2    Zhang, C.H.3
  • 28
    • 26444617168 scopus 로고    scopus 로고
    • Variable selection using MM algorithms
    • Hunter D.R. and Li R. Variable selection using MM algorithms. Annals of Statistics, 33(4), (2005), 1617-1642.
    • (2005) Annals of Statistics , vol.33 , Issue.4 , pp. 1617-1642
    • Hunter, D.R.1    Li, R.2
  • 30
    • 0035532140 scopus 로고    scopus 로고
    • Inference in high dimensional generalized linear models based on soft thresholding
    • Klinger A. Inference in high dimensional generalized linear models based on soft thresholding. Journal of the Royal Statistical Society Series B, 63(2), 377-392.
    • Journal of the Royal Statistical Society Series B , vol.63 , Issue.2 , pp. 377-392
    • Klinger, A.1
  • 31
    • 0034287156 scopus 로고    scopus 로고
    • Asymptotics for lasso-type estimators
    • Knight K. and Fu W.J. Asymptotics for lasso-type estimators. Annals of Statistics, 28(5), (2000), 1356-1378.
    • (2000) Annals of Statistics , vol.28 , Issue.5 , pp. 1356-1378
    • Knight, K.1    Fu, W.J.2
  • 36
    • 69949175557 scopus 로고    scopus 로고
    • A unified approach to model selection and sparse recovery using regularized least squares
    • Lv J. and Fan Y. A unified approach to model selection and sparse recovery using regularized least squares. Annals of Statistics, 37(6A), (2009), 34983528.
    • (2009) Annals of Statistics , vol.37 , pp. 3498-3528
    • Lv, J.1    Fan, Y.2
  • 38
    • 33747163541 scopus 로고    scopus 로고
    • High dimensional graphs and variable selection with the lasso
    • Meinshausen N. and Buhlmann P. High dimensional graphs and variable selection with the lasso. Annals of Statistics, 34(3), (2006), 1436-1462.
    • (2006) Annals of Statistics , vol.34 , Issue.3 , pp. 1436-1462
    • Meinshausen, N.1    Buhlmann, P.2
  • 39
    • 0036166439 scopus 로고    scopus 로고
    • Tumor classification by partial least squares using microarray gene expression data
    • Nguyen D.V. and Rocke D.M. Tumor classification by partial least squares using microarray gene expression data. Bioinformatics, 18(1), (2002), 3950.
    • (2002) Bioinformatics , vol.18 , Issue.1 , pp. 3950
    • Nguyen, D.V.1    Rocke, D.M.2
  • 43
    • 0345327592 scopus 로고    scopus 로고
    • A simple and efficient algorithm for gene selection using sparse logistic regression
    • Shevade S. and Keerthi S. A simple and efficient algorithm for gene selection using sparse logistic regression. Bioinformatics, 19(17), (2003), 22462253.
    • (2003) Bioinformatics , vol.19 , Issue.17 , pp. 22462253
    • Shevade, S.1    Keerthi, S.2
  • 44
    • 34250697375 scopus 로고    scopus 로고
    • Classifiers of support vector machine type with Li complexity regularization
    • Tarigan B. and van de Geer S. Classifiers of support vector machine type with Li complexity regularization. Bernoulli, 12(6), (2006), 1045-1076.
    • (2006) Bernoulli , vol.12 , Issue.6 , pp. 1045-1076
    • Tarigan, B.1    Van De Geer, S.2
  • 45
    • 0034911875 scopus 로고    scopus 로고
    • An efficient and robust statistical modeling approach to discover diferentially expressed genes using genomic expression profiles
    • Thomas J.G., Olson J.M. and Tapscott S.J. An efficient and robust statistical modeling approach to discover diferentially expressed genes using genomic expression profiles. Genome Research, 11, (2001), 1227-1236.
    • (2001) Genome Research , vol.11 , pp. 1227-1236
    • Thomas, J.G.1    Olson, J.M.2    Tapscott, S.J.3
  • 47
    • 0035533631 scopus 로고    scopus 로고
    • Convergence of block coordinate descent method for nondifferentiable maximization
    • Tseng P. Convergence of block coordinate descent method for nondifferentiable maximization. Journal of Optimization Theory and Applications, 109, (2001), 473-492.
    • (2001) Journal of Optimization Theory and Applications , vol.109 , pp. 473-492
    • Tseng, P.1
  • 48
    • 46749146509 scopus 로고    scopus 로고
    • A coordinate descent gradient method for nonsmooth separable minimization
    • Tseng P. and Yun S. A coordinate descent gradient method for nonsmooth separable minimization. Mathematical Programming, 117, (2009), 387423.
    • (2009) Mathematical Programming , vol.117 , pp. 387423
    • Tseng, P.1    Yun, S.2
  • 49
    • 35348879976 scopus 로고    scopus 로고
    • Unified lasso estimation via least squares approximation
    • Wang H. and Leng C. Unified lasso estimation via least squares approximation. Journal of the American Statistical Association, 102(479), (2007), 10391048.
    • (2007) Journal of the American Statistical Association , vol.102 , Issue.479 , pp. 10391048
    • Wang, H.1    Leng, C.2
  • 52
    • 84863879353 scopus 로고    scopus 로고
    • Coordinate descent algorithms for lasso penalized regression
    • Wu T.T. and Lange K. Coordinate descent algorithms for lasso penalized regression. Annals of Applied Statistics, 2(1), (2008), 224-244.
    • (2008) Annals of Applied Statistics , vol.2 , Issue.1 , pp. 224-244
    • Wu, T.T.1    Lange, K.2
  • 53
    • 33645035051 scopus 로고    scopus 로고
    • Model selection and estimation in regression with grouped variables
    • Yuan M. and Lin Y. Model selection and estimation in regression with grouped variables. Journal of the Royal Statistical Society Series B, 68(1), (2006), 49-67.
    • (2006) Journal of the Royal Statistical Society Series B , vol.68 , Issue.1 , pp. 49-67
    • Yuan, M.1    Lin, Y.2
  • 54
    • 50949096321 scopus 로고    scopus 로고
    • The sparsity and bias of the lasso selection in high-dimensional linear regression
    • Zhang C.H. and Huang J. The sparsity and bias of the lasso selection in high-dimensional linear regression. Annals of Statistics, 36(4), (2008), 15671594.
    • (2008) Annals of Statistics , vol.36 , Issue.4 , pp. 1567-1594
    • Zhang, C.H.1    Huang, J.2
  • 55
    • 69049086702 scopus 로고    scopus 로고
    • Some sharp performance bounds for least squares regression with L1 regularization
    • Zhang T. Some sharp performance bounds for least squares regression with L1 regularization. Annals of Statistics, 37(5A), (2009), 2109-2144.
    • (2009) Annals of Statistics , vol.37 , Issue.5 , pp. 2109-2144
    • Zhang, T.1
  • 56
    • 0001868572 scopus 로고    scopus 로고
    • Text categorization based on regularized linear classifiers
    • Zhang T. and Oles F. Text categorization based on regularized linear classifiers. Information Retrieval, 4(1), (2001), 5-31.
    • (2001) Information Retrieval , vol.4 , Issue.1 , pp. 5-31
    • Zhang, T.1    Oles, F.2
  • 57
    • 33846114377 scopus 로고    scopus 로고
    • The adaptive lasso and its oracle properties
    • Zou H. The adaptive lasso and its oracle properties. Journal of the American Statistical Association, 101(476), (2006), 1418-1429.
    • (2006) Journal of the American Statistical Association , vol.101 , Issue.476 , pp. 1418-1429
    • Zou, H.1
  • 58
  • 59
    • 51049104549 scopus 로고    scopus 로고
    • One-step sparse estimates in nonconcave penalized likelihood models
    • Zou H. and Li R. One-step sparse estimates in nonconcave penalized likelihood models. Annals of Statistics, 36(4), (2008), 1509-1533.
    • (2008) Annals of Statistics , vol.36 , Issue.4 , pp. 1509-1533
    • Zou, H.1    Li, R.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.