메뉴 건너뛰기




Volumn 22, Issue 11-12, 2008, Pages 686-694

Relevance vector machines for multivariate calibration purposes

Author keywords

Bayesian learning; Kernel methods; Multivariate calibration; Relevance vector machines

Indexed keywords

ECONOMIC AND SOCIAL EFFECTS; LEAST SQUARES APPROXIMATIONS; REGRESSION ANALYSIS; SUPPORT VECTOR MACHINES; VECTORS;

EID: 57149086674     PISSN: 08869383     EISSN: 1099128X     Source Type: Journal    
DOI: 10.1002/cem.1168     Document Type: Conference Paper
Times cited : (31)

References (25)
  • 3
    • 0035930407 scopus 로고    scopus 로고
    • Multivariate calibration with Raman data using fast principal components and partial least square method
    • Estienne F, Massart DL. Multivariate calibration with Raman data using fast principal components and partial least square method. Anal. Chim. Acta 2001; 450: 123-129.
    • (2001) Anal. Chim. Acta , vol.450 , pp. 123-129
    • Estienne, F.1    Massart, D.L.2
  • 5
    • 0037191113 scopus 로고    scopus 로고
    • A flexible classification approach with optimal generalization performance: Support vector machines
    • Belousov AI, Versakov SA, Von Frese J. A flexible classification approach with optimal generalization performance: support vector machines. Chemon. Intell. Lab. Syst. 2002; 64: 15-25.
    • (2002) Chemon. Intell. Lab. Syst , vol.64 , pp. 15-25
    • Belousov, A.I.1    Versakov, S.A.2    Von Frese, J.3
  • 6
    • 0036685120 scopus 로고    scopus 로고
    • Application aspects of supports vector machines
    • Belousov AI, Versakov SA, Von Frese J. Application aspects of supports vector machines. J. Chemom. 2002; 16: 482-489.
    • (2002) J. Chemom , vol.16 , pp. 482-489
    • Belousov, A.I.1    Versakov, S.A.2    Von Frese, J.3
  • 9
    • 3042551400 scopus 로고    scopus 로고
    • Multivariate calibration with least-squares support vector machines
    • Thissen U, Üstun B, Melssen WJ, Bydens LMC. Multivariate calibration with least-squares support vector machines. Anal. Chem. 2004, 76: 3099-3105.
    • (2004) Anal. Chem , vol.76 , pp. 3099-3105
    • Thissen, U.1    Üstun, B.2    Melssen, W.J.3    Bydens, L.M.C.4
  • 11
    • 84899032239 scopus 로고    scopus 로고
    • The relevance vector machines
    • Solla SA, Leen TK, Muller K-R eds, MIT Press: Cambridge, MA
    • Tipping ME. The relevance vector machines. In Advances in Neural Information Processing Systems 12, Solla SA, Leen TK, Muller K-R (eds). MIT Press: Cambridge, MA, 2000; 652-658.
    • (2000) Advances in Neural Information Processing Systems 12 , pp. 652-658
    • Tipping, M.E.1
  • 12
    • 0001025418 scopus 로고
    • Bayesian interpolation
    • Mackay DJC. Bayesian interpolation. Neural Comput. 1992; 4(3): 415-447.
    • (1992) Neural Comput , vol.4 , Issue.3 , pp. 415-447
    • Mackay, D.J.C.1
  • 14
    • 84899019663 scopus 로고    scopus 로고
    • Analysis of sparse Bayesian learning
    • Dietterich TG, Becker S, Ghahramani Z eds, MIT Press: Cambridge, MA
    • Faul AC, Tipping ME. Analysis of sparse Bayesian learning. In Advances in Neural Information Processing Systems 14, Dietterich TG, Becker S, Ghahramani Z (eds). MIT Press: Cambridge, MA, 2002; 383-389.
    • (2002) Advances in Neural Information Processing Systems 14 , pp. 383-389
    • Faul, A.C.1    Tipping, M.E.2
  • 15
    • 0001224048 scopus 로고    scopus 로고
    • Sparse Bayesian learning and the relevance vector machine
    • Tipping ME. Sparse Bayesian learning and the relevance vector machine. J. Mach. Learn. Res. 2001; 1: 211-244.
    • (2001) J. Mach. Learn. Res , vol.1 , pp. 211-244
    • Tipping, M.E.1
  • 17
    • 84871942124 scopus 로고    scopus 로고
    • Available at Statlib
    • Tecator dataset. Available at Statlib: http://lib.stat.cmu.edu/datasets/ tecator
    • Tecator dataset
  • 18
    • 0036575606 scopus 로고    scopus 로고
    • Chemometric quantitation of the active substance in a pharmaceutical tablet using near infrared (NIR) transmittance and NIR FT Raman spectra
    • Dyrby M, Engelsen SB, Nrgaard L, Bruhn M, Lundsberg-Nielsen L. Chemometric quantitation of the active substance in a pharmaceutical tablet using near infrared (NIR) transmittance and NIR FT Raman spectra. Appl. Spectrosc. 2002; 56(5): 579-585.
    • (2002) Appl. Spectrosc , vol.56 , Issue.5 , pp. 579-585
    • Dyrby, M.1    Engelsen, S.B.2    Nrgaard, L.3    Bruhn, M.4    Lundsberg-Nielsen, L.5
  • 19
    • 57149099958 scopus 로고    scopus 로고
    • Available at
    • Tablet Dataset. Available at http://www.models.kvl.dk.research/data/ Tablets/
    • Tablet Dataset
  • 20
    • 85153547974 scopus 로고    scopus 로고
    • Matlab Toolbox for Kernel Methods:, Available at
    • Matlab Toolbox for Kernel Methods: The Spider. Available at http://www.kyb.tuebingen.mpg.de/bs/people/spider/
    • The Spider
  • 23
    • 32944462016 scopus 로고    scopus 로고
    • Mutual information for the selection of relevant variables in spectrometric nonlinear modelling
    • Rossi F, Lendasse A, Francois D, Wertz V, Verleysen M. Mutual information for the selection of relevant variables in spectrometric nonlinear modelling. Chemometr. Intell. Lab. Syst. 2006; 80(2): 215-226
    • (2006) Chemometr. Intell. Lab. Syst , vol.80 , Issue.2 , pp. 215-226
    • Rossi, F.1    Lendasse, A.2    Francois, D.3    Wertz, V.4    Verleysen, M.5
  • 24
    • 34247508683 scopus 로고    scopus 로고
    • Gaussian process regression for multivariate spectroscopic calibration
    • Chen T, Morris J, Martin E. Gaussian process regression for multivariate spectroscopic calibration. Chemon. Intell. Lab. Syst. 2007; 87: 59-71.
    • (2007) Chemon. Intell. Lab. Syst , vol.87 , pp. 59-71
    • Chen, T.1    Morris, J.2    Martin, E.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.