메뉴 건너뛰기




Volumn 36, Issue 6, 2009, Pages 10054-10059

Automatic EEG signal classification for epilepsy diagnosis with Relevance Vector Machines

Author keywords

EEG signal classification; Epilepsy; Kernel machines; Sensitivity analysis

Indexed keywords

ACCURACY RATES; EEG SIGNAL CLASSIFICATION; EEG SIGNALS; ELECTRO-ENCEPHALOGRAM SIGNALS; EMPIRICAL RESULTS; EPILEPSY; EPILEPSY DETECTIONS; FEATURE EXTRACTION TECHNIQUES; INPUT DATUM; KERNEL FUNCTIONS; KERNEL MACHINES; KERNEL PARAMETERS; KERNEL-BASED LEARNING; PERFORMANCE LEVELS; PREDICTIVE ACCURACIES; RELEVANCE VECTOR MACHINES; SENSITIVITY PROFILES; STATISTICAL FEATURES; SUPPORT VECTORS;

EID: 64449084585     PISSN: 09574174     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.eswa.2009.01.022     Document Type: Article
Times cited : (78)

References (28)
  • 1
    • 0035682573 scopus 로고    scopus 로고
    • Indications of nonlinear deterministic and finite dimensional structures in time series of brain electrical activity: Dependence on recording region and brain state
    • Andrzejak R.G., Lehnertz K., Mormann F., Rieke C., David P., and Elger C.E. Indications of nonlinear deterministic and finite dimensional structures in time series of brain electrical activity: Dependence on recording region and brain state. Physical Review E 64 6 (2001) 061907
    • (2001) Physical Review E , vol.64 , Issue.6 , pp. 061907
    • Andrzejak, R.G.1    Lehnertz, K.2    Mormann, F.3    Rieke, C.4    David, P.5    Elger, C.E.6
  • 3
    • 27144489164 scopus 로고    scopus 로고
    • A tutorial on support vector machines for pattern recognition
    • Burges C.J.C. A tutorial on support vector machines for pattern recognition. Data Mining and Knowledge Discovery 2 (1998) 121-167
    • (1998) Data Mining and Knowledge Discovery , vol.2 , pp. 121-167
    • Burges, C.J.C.1
  • 5
    • 0346250790 scopus 로고    scopus 로고
    • Practical selection of SVM parameters and noise estimation for SVM regression
    • Cherkassky V., and Ma Y. Practical selection of SVM parameters and noise estimation for SVM regression. Neural Networks 17 (2004) 113-126
    • (2004) Neural Networks , vol.17 , pp. 113-126
    • Cherkassky, V.1    Ma, Y.2
  • 7
    • 35348821947 scopus 로고    scopus 로고
    • Hyperspectral image classification using relevance vector machines
    • Demir B., and Erturk S. Hyperspectral image classification using relevance vector machines. IEEE Geoscience and Remote Sensing Letters 4 4 (2007) 586-590
    • (2007) IEEE Geoscience and Remote Sensing Letters , vol.4 , Issue.4 , pp. 586-590
    • Demir, B.1    Erturk, S.2
  • 9
    • 26944458497 scopus 로고    scopus 로고
    • Adaptive neuro-fuzzy inference system for classification of EEG signals using wavelet coefficients
    • Güler I., and Übeyli E.D. Adaptive neuro-fuzzy inference system for classification of EEG signals using wavelet coefficients. Journal of Neuroscience Methods 148 (2005) 113-121
    • (2005) Journal of Neuroscience Methods , vol.148 , pp. 113-121
    • Güler, I.1    Übeyli, E.D.2
  • 10
    • 24144470790 scopus 로고    scopus 로고
    • Recurrent neural networks employing Lyapunov exponents for EEG signals classification
    • Güler N.F., Übeyli E.D., and Güler I. Recurrent neural networks employing Lyapunov exponents for EEG signals classification. Expert Systems with Applications 29 (2005) 506-514
    • (2005) Expert Systems with Applications , vol.29 , pp. 506-514
    • Güler, N.F.1    Übeyli, E.D.2    Güler, I.3
  • 11
  • 13
    • 0032834572 scopus 로고    scopus 로고
    • Non-linear time series analysis of intracranial EEG recordings in patients with epilepsy - An overview
    • Lehnertz K. Non-linear time series analysis of intracranial EEG recordings in patients with epilepsy - An overview. International Journal of Psychophysiology 34 1 (1999) 45-52
    • (1999) International Journal of Psychophysiology , vol.34 , Issue.1 , pp. 45-52
    • Lehnertz, K.1
  • 14
    • 64449086184 scopus 로고    scopus 로고
    • Lima, C. A. M., Coelho, A. L. V., & Von Zuben, F. J. (2002). Model selection based on VC-dimension for heterogeneous ensembles of support vector machines. In Proceedings of the fourth international conference on recent advances in soft computing (pp. 459-464). Nottingham.
    • Lima, C. A. M., Coelho, A. L. V., & Von Zuben, F. J. (2002). Model selection based on VC-dimension for heterogeneous ensembles of support vector machines. In Proceedings of the fourth international conference on recent advances in soft computing (pp. 459-464). Nottingham.
  • 17
    • 0842310823 scopus 로고    scopus 로고
    • A neural-network-based detection of epilepsy
    • Nigam V.P., and Graupe D. A neural-network-based detection of epilepsy. Neurological Research 26 (2004) 55-60
    • (2004) Neurological Research , vol.26 , pp. 55-60
    • Nigam, V.P.1    Graupe, D.2
  • 19
    • 17844371713 scopus 로고    scopus 로고
    • Epileptic seizure detection using dynamic wavelet network
    • Subasi A. Epileptic seizure detection using dynamic wavelet network. Expert Systems with Applications 28 (2005) 701-711
    • (2005) Expert Systems with Applications , vol.28 , pp. 701-711
    • Subasi, A.1
  • 20
    • 33751396389 scopus 로고    scopus 로고
    • EEG signal classification using wavelet feature extraction and a mixture of expert model
    • Subasi A. EEG signal classification using wavelet feature extraction and a mixture of expert model. Expert Systems with Applications 32 (2007) 1084-1093
    • (2007) Expert Systems with Applications , vol.32 , pp. 1084-1093
    • Subasi, A.1
  • 21
    • 17744374301 scopus 로고    scopus 로고
    • Classification of EEG signals using neural network and logistic regression
    • Subasi A., and Ercelebi E. Classification of EEG signals using neural network and logistic regression. Computer Methods and Programs in Biomedicine 78 (2005) 87-99
    • (2005) Computer Methods and Programs in Biomedicine , vol.78 , pp. 87-99
    • Subasi, A.1    Ercelebi, E.2
  • 23
    • 84899032239 scopus 로고    scopus 로고
    • Tipping, M. E. (2000). The relevance vector machine. In S. A. Solla, T. Leen, & K.-R. Müller, Advances in neural information processing systems (12, pp. 652-658). Cambridge: MIT Press.
    • Tipping, M. E. (2000). The relevance vector machine. In S. A. Solla, T. Leen, & K.-R. Müller, Advances in neural information processing systems (Vol. 12, pp. 652-658). Cambridge: MIT Press.
  • 24
    • 0001224048 scopus 로고    scopus 로고
    • Sparse Bayesian learning and the relevance vector machine
    • Tipping M.E. Sparse Bayesian learning and the relevance vector machine. Journal of Machine Learning Research 1 (2001) 211-244
    • (2001) Journal of Machine Learning Research , vol.1 , pp. 211-244
    • Tipping, M.E.1
  • 25
    • 34648820349 scopus 로고    scopus 로고
    • On selection of kernel parameters in relevance vector machines for hydrologic applications
    • Tripathi S., and Govindaraju R.S. On selection of kernel parameters in relevance vector machines for hydrologic applications. Stochastic Environmental Research and Risk Assessment 21 6 (2007) 747-764
    • (2007) Stochastic Environmental Research and Risk Assessment , vol.21 , Issue.6 , pp. 747-764
    • Tripathi, S.1    Govindaraju, R.S.2
  • 26
    • 37349024109 scopus 로고    scopus 로고
    • Wavelet/mixture of experts network structure for EEG signals classification
    • Übeyli E.D. Wavelet/mixture of experts network structure for EEG signals classification. Expert Systems with Applications 34 (2008) 1954-1962
    • (2008) Expert Systems with Applications , vol.34 , pp. 1954-1962
    • Übeyli, E.D.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.