메뉴 건너뛰기




Volumn 5, Issue 4, 2010, Pages

Improved microarray-based decision support with graph encoded interactome data

Author keywords

[No Author keywords available]

Indexed keywords

MICRORNA;

EID: 77956318400     PISSN: None     EISSN: 19326203     Source Type: Journal    
DOI: 10.1371/journal.pone.0010225     Document Type: Article
Times cited : (5)

References (77)
  • 1
    • 0033536012 scopus 로고    scopus 로고
    • Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays
    • Alon A, Barkai N, Notterman DA, GishK, Ybarra S, et al. (1999) Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays. Proc Natl Acad Sci U S A 96: 6745-6750.
    • (1999) Proc Natl Acad Sci U S A , vol.96 , pp. 6745-6750
    • Alon, A.1    Barkai, N.2    Notterman, D.A.3    Gish, K.4    Ybarra, S.5
  • 2
    • 0033569406 scopus 로고    scopus 로고
    • Molecular classification of cancer: Class discovery and class prediction by gene expression monitoring
    • Golub TR, Slonim DK, Tamayo P, Huard C, Gaasenbeek M, et al. (1999) Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 286: 531-537.
    • (1999) Science , vol.286 , pp. 531-537
    • Golub, T.R.1    Slonim, D.K.2    Tamayo, P.3    Huard, C.4    Gaasenbeek, M.5
  • 3
    • 19044391072 scopus 로고    scopus 로고
    • Gene expression correlates of clinical prostate cancer behavior
    • Singh D, Febbo PG, Ross K, Jackson DG, Manola J, et al. (2002) Gene expression correlates of clinical prostate cancer behavior. Cancer Cell 1: 203-209.
    • (2002) Cancer Cell , vol.1 , pp. 203-209
    • Singh, D.1    Febbo, P.G.2    Ross, K.3    Jackson, D.G.4    Manola, J.5
  • 4
    • 0038244058 scopus 로고    scopus 로고
    • Gene expression predictors of breast cancer outcomes
    • Huang E, Cheng SH, Dressman H, Pittman J, Tsou MH, et al. (2003) Gene expression predictors of breast cancer outcomes. Lancet 361: 1590-1596.
    • (2003) Lancet , vol.361 , pp. 1590-1596
    • Huang, E.1    Cheng, S.H.2    Dressman, H.3    Pittman, J.4    Tsou, M.H.5
  • 5
    • 21044455139 scopus 로고    scopus 로고
    • Patterns of gene expression that characterize long-term survival in advanced stage serous ovarian cancers
    • Berchuck A, Iversen ES, Lancaster JM, Pittman J, Luo J, et al. (2005) Patterns of gene expression that characterize long-term survival in advanced stage serous ovarian cancers. Clin Cancer Res 11: 3686-3696.
    • (2005) Clin Cancer Res , vol.11 , pp. 3686-3696
    • Berchuck, A.1    Iversen, E.S.2    Lancaster, J.M.3    Pittman, J.4    Luo, J.5
  • 6
    • 33845191779 scopus 로고    scopus 로고
    • Genomic and transcriptional aberrations linked to breast cancer pathophysiologies
    • Chin K, DeVries S, Fridlyand J, Spellman PT, Roydasgupta R, et al. (2006) Genomic and transcriptional aberrations linked to breast cancer pathophysiologies. Cancer Cell 10: 529-541.
    • (2006) Cancer Cell , vol.10 , pp. 529-541
    • Chin, K.1    DeVries, S.2    Fridlyand, J.3    Spellman, P.T.4    Roydasgupta, R.5
  • 7
    • 67650349829 scopus 로고    scopus 로고
    • New diagnostics and biological predictors of outcome in early breast cancer
    • Oakman C, Bessi S, Zafarana E, Galardi F, Biganzoli L, et al. (2009) New diagnostics and biological predictors of outcome in early breast cancer. Breast Cancer Res 11: 205.
    • (2009) Breast Cancer Res , vol.11 , pp. 205
    • Oakman, C.1    Bessi, S.2    Zafarana, E.3    Galardi, F.4    Biganzoli, L.5
  • 8
    • 36148981192 scopus 로고    scopus 로고
    • Pathway analysis of gene signatures predicting metastasis of node-negative primary breast cancer
    • Yu JX, Sieuwerts AM, Zhang Y, Martens JWM, Smid M, et al. (2007) Pathway analysis of gene signatures predicting metastasis of node-negative primary breast cancer. BMC Cancer 7: 182.
    • (2007) BMC Cancer , vol.7 , pp. 182
    • Yu, J.X.1    Sieuwerts, A.M.2    Zhang, Y.3    Martens, J.W.M.4    Smid, M.5
  • 9
    • 33749605681 scopus 로고    scopus 로고
    • Proliferation: The most prominent predictor of clinical outcome in breast cancer
    • Desmedt C, Sotiriou C (2006) Proliferation: the most prominent predictor of clinical outcome in breast cancer. Cell Cycle 5: 2198-2202.
    • (2006) Cell Cycle , vol.5 , pp. 2198-2202
    • Desmedt, C.1    Sotiriou, C.2
  • 11
    • 70449481151 scopus 로고    scopus 로고
    • A kernel-based integration of genome-wide data for clinical decision support
    • Daemen A, Gevaert O, Ojeda F, Debuquoy A, Suykens JAK, et al. (2009) A kernel-based integration of genome-wide data for clinical decision support. Genome Med 1: 39.
    • (2009) Genome Med , vol.1 , pp. 39
    • Daemen, A.1    Gevaert, O.2    Ojeda, F.3    Debuquoy, A.4    Suykens, J.A.K.5
  • 12
    • 0037245343 scopus 로고    scopus 로고
    • Pitfalls in the use of DNA microarray data for diagnostic and prognostic classification
    • Simon R, Radmacher MK, Dobbin K, McShane LM (2003) Pitfalls in the use of DNA microarray data for diagnostic and prognostic classification. J Natl Cancer Inst 95: 14-18.
    • (2003) J Natl Cancer Inst , vol.95 , pp. 14-18
    • Simon, R.1    Radmacher, M.K.2    Dobbin, K.3    McShane, L.M.4
  • 13
    • 13444282534 scopus 로고    scopus 로고
    • Outcome signature genes in breast cancer: Is there a unique set?
    • Ein-Dor L, Kela I, Getz G, Givol D, Domany E (2005) Outcome signature genes in breast cancer: is there a unique set? Bioinformatics 21: 171- 178.
    • (2005) Bioinformatics , vol.21 , pp. 171-178
    • Ein-Dor, L.1    Kela, I.2    Getz, G.3    Givol, D.4    Domany, E.5
  • 14
    • 14644436209 scopus 로고    scopus 로고
    • Extracting active pathways from gene expression data
    • Vert J-P, Kanehisa M (2003) Extracting active pathways from gene expression data. Bioinformatics 19: ii238-ii244.
    • (2003) Bioinformatics , vol.19 , pp. 2238-2244
    • Vert, J.P.1    Kanehisa, M.2
  • 15
    • 0038014879 scopus 로고    scopus 로고
    • Co-clustering of biological networks and gene expression data
    • Hanisch D, Zien A, Zimmer R, Lengauer T (2002) Co-clustering of biological networks and gene expression data. Bioinformatics 18: S145-S154.
    • (2002) Bioinformatics , vol.18
    • Hanisch, D.1    Zien, A.2    Zimmer, R.3    Lengauer, T.4
  • 16
    • 42649140560 scopus 로고    scopus 로고
    • Network-constrained regularization and variable selection for analysis of genomic data
    • Li C, Li H (2008) Network-constrained regularization and variable selection for analysis of genomic data. Bioinformatics 24: 1175-1182.
    • (2008) Bioinformatics , vol.24 , pp. 1175-1182
    • Li, C.1    Li, H.2
  • 17
    • 58149185138 scopus 로고    scopus 로고
    • Nucleic Acids Research annual database issue and the NAR online molecular biology database collection in 2009
    • Galperin MY, Cochrane GR (2009) Nucleic Acids Research annual database issue and the NAR online molecular biology database collection in 2009. Nucleic Acids Res 37: D1-D4.
    • (2009) Nucleic Acids Res , vol.37
    • Galperin, M.Y.1    Cochrane, G.R.2
  • 20
    • 39149143293 scopus 로고    scopus 로고
    • A systems biology approach to prediction of oncogenes and molecular perturbation targets in B-cell lymphomas
    • Mani KM, Lefebvre C, Wang K, Lim WK, Basso K, et al. (2008) A systems biology approach to prediction of oncogenes and molecular perturbation targets in B-cell lymphomas. Mol Syst Biol 4: 169.
    • (2008) Mol Syst Biol , vol.4 , pp. 169
    • Mani, K.M.1    Lefebvre, C.2    Wang, K.3    Lim, W.K.4    Basso, K.5
  • 21
    • 59849125136 scopus 로고    scopus 로고
    • Dynamic modularity in protein interaction networks predicts breast cancer outcome
    • Taylor IW, Linding R, Warde-Farley D, Liu Y, Pesquita C, et al. (2009) Dynamic modularity in protein interaction networks predicts breast cancer outcome. Nature Biotech 27: 199-204.
    • (2009) Nature Biotech , vol.27 , pp. 199-204
    • Taylor, I.W.1    Linding, R.2    Warde-Farley, D.3    Liu, Y.4    Pesquita, C.5
  • 23
    • 75549090213 scopus 로고    scopus 로고
    • KEGG for representation and analysis of molecular networks involving diseases and drugs
    • Kanehisa M, Goto S, Furumichi M, Tanaba M, Hirakawa M (2010) KEGG for representation and analysis of molecular networks involving diseases and drugs. Nucleic Acids Res 38: D355-D360.
    • (2010) Nucleic Acids Res , vol.38
    • Kanehisa, M.1    Goto, S.2    Furumichi, M.3    Tanaba, M.4    Hirakawa, M.5
  • 25
    • 34548855730 scopus 로고    scopus 로고
    • Unequal evolutionary conservation of human protein interactions in interologous networks
    • Brown KR, Jurisca I (2007) Unequal evolutionary conservation of human protein interactions in interologous networks. Genome Biol 8: R95.
    • (2007) Genome Biol , vol.8
    • Brown, K.R.1    Jurisca, I.2
  • 27
    • 0032638628 scopus 로고    scopus 로고
    • Least squares support vector machine classifiers
    • Suykens JAK, Vandewalle J (1999) Least squares support vector machine classifiers. Neural Processing Lett 9: 293-300.
    • (1999) Neural Processing Lett , vol.9 , pp. 293-300
    • Suykens, J.A.K.1    Vandewalle, J.2
  • 29
    • 40649116219 scopus 로고    scopus 로고
    • Leave-one-out cross-validation based model selection criteria for weighted LS-SVMs
    • Cawley GC (2006) Leave-one-out cross-validation based model selection criteria for weighted LS-SVMs. Proc Int Joint Conf in Neural Networks. pp 1661-1668.
    • (2006) Proc Int Joint Conf in Neural Networks , pp. 1661-1668
    • Cawley, G.C.1
  • 30
    • 33847766633 scopus 로고    scopus 로고
    • Random-walk computation of similarities between nodes of a graph with application to collaborative recommendation
    • Fouss F, Pirotte A, Renders J-M, Saerens M (2007) Random-walk computation of similarities between nodes of a graph with application to collaborative recommendation. IEEE Transactions on Knowledge and Data Engineering 19: 355-369.
    • (2007) IEEE Transactions on Knowledge and Data Engineering , vol.19 , pp. 355-369
    • Fouss, F.1    Pirotte, A.2    Renders, J.M.3    Saerens, M.4
  • 31
    • 33750975917 scopus 로고    scopus 로고
    • Support vector machine learning from heterogeneous data: An empirical analysis using protein sequence and structure
    • Lewis DP, Jebara T, Noble WS (2006) Support vector machine learning from heterogeneous data: an empirical analysis using protein sequence and structure. Bioinformatics 22: 2753-2760.
    • (2006) Bioinformatics , vol.22 , pp. 2753-2760
    • Lewis, D.P.1    Jebara, T.2    Noble, W.S.3
  • 32
    • 20444460289 scopus 로고    scopus 로고
    • MicroRNA expression profiles classify human cancers
    • Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J, et al. (2005) MicroRNA expression profiles classify human cancers. Nature 435: 834-838.
    • (2005) Nature , vol.435 , pp. 834-838
    • Lu, J.1    Getz, G.2    Miska, E.A.3    Alvarez-Saavedra, E.4    Lamb, J.5
  • 33
    • 31144459985 scopus 로고    scopus 로고
    • Oncogenic pathway signatures in human cancers as a guide to targeted therapies
    • Bild AH, Yao G, Chang JT, Wang Q, Potti A, et al. (2006) Oncogenic pathway signatures in human cancers as a guide to targeted therapies. Nature 439: 353-357.
    • (2006) Nature , vol.439 , pp. 353-357
    • Bild, A.H.1    Yao, G.2    Chang, J.T.3    Wang, Q.4    Potti, A.5
  • 34
    • 0037142053 scopus 로고    scopus 로고
    • The use of molecular profiling to predict survival after chemotherapy for diffuse large-B-cell lymphoma
    • Rosenwald A, Wright G, Chan WC, Connors JM, Campo E, et al. (2002) The use of molecular profiling to predict survival after chemotherapy for diffuse large-B-cell lymphoma. New Engl J Med 346: 1937-1947.
    • (2002) New Engl J Med , vol.346 , pp. 1937-1947
    • Rosenwald, A.1    Wright, G.2    Chan, W.C.3    Connors, J.M.4    Campo, E.5
  • 35
    • 13844310310 scopus 로고    scopus 로고
    • Geneexpression profiles to predict distant metastasis of lymph-node-negative primary breast cancer
    • Wang Y, Klijn JGM, Zhang Y, Sieuwerts AM, Look MP, et al. (2005) Geneexpression profiles to predict distant metastasis of lymph-node-negative primary breast cancer. Lancet 365: 671-679.
    • (2005) Lancet , vol.365 , pp. 671-679
    • Wang, Y.1    Klijn, J.G.M.2    Zhang, Y.3    Sieuwerts, A.M.4    Look, M.P.5
  • 36
    • 29144535372 scopus 로고    scopus 로고
    • Evolving gene/ transcript definitions significantly alter the interpretation of GeneChip data
    • Dai M, Wang P, Boyd AD, Kostov G, Athey B, et al. (2005) Evolving gene/ transcript definitions significantly alter the interpretation of GeneChip data. Nucleic Acids Res 33: e175.
    • (2005) Nucleic Acids Res , vol.33
    • Dai, M.1    Wang, P.2    Boyd, A.D.3    Kostov, G.4    Athey, B.5
  • 38
    • 34548860112 scopus 로고    scopus 로고
    • The Edinburgh human metabolic network reconstruction and its functional analysis
    • Ma H, Sorokin A, Mazein A, Selkov A, Selkov E, et al. (2007) The Edinburgh human metabolic network reconstruction and its functional analysis. Mol Syst Biol 3: 135.
    • (2007) Mol Syst Biol , vol.3 , pp. 135
    • Ma, H.1    Sorokin, A.2    Mazein, A.3    Selkov, A.4    Selkov, E.5
  • 39
    • 75549090505 scopus 로고    scopus 로고
    • The MetaCyc Database of metabolic pathways and enzymes and the BioCyc collection of Pathway/Genome Databases
    • Caspi R, Altman T, Dale JM, Dreher K, Fulcher CA, et al. (2010) The MetaCyc Database of metabolic pathways and enzymes and the BioCyc collection of Pathway/Genome Databases. Nucleic Acids Res 38: D473-D479.
    • (2010) Nucleic Acids Res , vol.38
    • Caspi, R.1    Altman, T.2    Dale, J.M.3    Dreher, K.4    Fulcher, C.A.5
  • 40
    • 14844326483 scopus 로고    scopus 로고
    • Computational prediction of human metabolic pathways from the complete human genome
    • Romero P, Wagg J, Green ML, Kaiser D, Krummenacker M, et al. (2004) Computational prediction of human metabolic pathways from the complete human genome. Genome Biol 6: R2.
    • (2004) Genome Biol , vol.6
    • Romero, P.1    Wagg, J.2    Green, M.L.3    Kaiser, D.4    Krummenacker, M.5
  • 41
    • 33747853260 scopus 로고    scopus 로고
    • APID: Agile Protein Interaction DataAnalyzer
    • Prieto C, De Las Rivas J (2006) APID: Agile Protein Interaction DataAnalyzer. Nucleic Acids Res 34: W298-W302.
    • (2006) Nucleic Acids Res , vol.34
    • Prieto, C.1    de Las Rivas, J.2
  • 43
    • 0037245913 scopus 로고    scopus 로고
    • BIND: The Biomolecular Interaction Network Database
    • Bader G, Betel D, Hogue C (2003) BIND: the Biomolecular Interaction Network Database. Nucleic Acids Res 31: 248-250.
    • (2003) Nucleic Acids Res , vol.31 , pp. 248-250
    • Bader, G.1    Betel, D.2    Hogue, C.3
  • 48
    • 58149193234 scopus 로고    scopus 로고
    • STRING 8 - a global view on proteins and their functional interactions in 630 organisms
    • Jensen LJ, Kuhn M, Stark M, Chaffron S, Creevey C, et al. (2009) STRING 8 - a global view on proteins and their functional interactions in 630 organisms. Nucleic Acids Res 37: D412-D416.
    • (2009) Nucleic Acids Res , vol.37
    • Jensen, L.J.1    Kuhn, M.2    Stark, M.3    Chaffron, S.4    Creevey, C.5
  • 50
    • 70449368351 scopus 로고    scopus 로고
    • Comparative analysis and unification of domain-domain interaction networks
    • Björkholm P, Sonnhammer ELL (2009) Comparative analysis and unification of domain-domain interaction networks. Bioinformatics 25: 3020-3025.
    • (2009) Bioinformatics , vol.25 , pp. 3020-3025
    • Björkholm, P.1    Sonnhammer, E.L.L.2
  • 55
    • 31044444975 scopus 로고    scopus 로고
    • TarBase: A comprehensive database of experimentally supported animal microRNA targets
    • Sethupathy P, Corda B, Hatzigeorgiou AG (2006) TarBase: a comprehensive database of experimentally supported animal microRNA targets. RNA 12: 192-197.
    • (2006) RNA , vol.12 , pp. 192-197
    • Sethupathy, P.1    Corda, B.2    Hatzigeorgiou, A.G.3
  • 57
    • 60149095444 scopus 로고    scopus 로고
    • Most mammalian mRNAs are conserved targets of microRNAs
    • Friedman RC, Farh K, Burge CB, Bartel DP (2009) Most mammalian mRNAs are conserved targets of microRNAs. Genome Res 19: 92-105.
    • (2009) Genome Res , vol.19 , pp. 92-105
    • Friedman, R.C.1    Farh, K.2    Burge, C.B.3    Bartel, D.P.4
  • 58
    • 0041775676 scopus 로고    scopus 로고
    • Diffusion kernels on graphs and other discrete structures
    • Kondor RI, Lafferty J (2002) Diffusion kernels on graphs and other discrete structures. Proc Int Conf Mach Learn. pp 315-322.
    • (2002) Proc Int Conf Mach Learn , pp. 315-322
    • Kondor, R.I.1    Lafferty, J.2
  • 61
    • 10244252786 scopus 로고    scopus 로고
    • Systematic benchmarking of microarray data classification: Assessing the role of nonlinearity and dimensionality reduction
    • Pochet N, De Smet F, Suykens JAK, De Moor B (2004) Systematic benchmarking of microarray data classification: assessing the role of nonlinearity and dimensionality reduction. Bioinformatics 20: 3185-3195.
    • (2004) Bioinformatics , vol.20 , pp. 3185-3195
    • Pochet, N.1    De Smet, F.2    Suykens, J.A.K.3    De Moor, B.4
  • 62
    • 84867038939 scopus 로고    scopus 로고
    • Experiments with classifier combining rules
    • In: Kittler J, Roli F, eds. Heidelberg: Springer-Verlag
    • Duin RPW, Tax DMJ (2000) Experiments with classifier combining rules. In: Kittler J, Roli F, eds. Multiple Classifier Systems. Heidelberg: Springer-Verlag. pp 16-29.
    • (2000) Multiple Classifier Systems , pp. 16-29
    • Duin, R.P.W.1    Tax, D.M.J.2
  • 63
  • 64
    • 22444454265 scopus 로고    scopus 로고
    • Combining classifiers: A theoretical framework
    • Kittler J (1998) Combining classifiers: a theoretical framework. Pattern Anal Appl 1: 18-27.
    • (1998) Pattern Anal Appl , vol.1 , pp. 18-27
    • Kittler, J.1
  • 66
    • 0001195441 scopus 로고
    • Numerical tools for analysis and solution of Fredholm integral equations of the first kind
    • Hansen PC (1992) Numerical tools for analysis and solution of Fredholm integral equations of the first kind. Inverse Problems 8: 849-872.
    • (1992) Inverse Problems , vol.8 , pp. 849-872
    • Hansen, P.C.1
  • 67
    • 45449112561 scopus 로고    scopus 로고
    • The peaking phenomenon in the presence of feature selection
    • Sima C, Dougherty ER (2008) The peaking phenomenon in the presence of feature selection. Pattern Recognit Lett 29: 1667-1674.
    • (2008) Pattern Recognit Lett , vol.29 , pp. 1667-1674
    • Sima, C.1    Dougherty, E.R.2
  • 68
    • 0032042805 scopus 로고    scopus 로고
    • Expected classification error of the Fisher linear classifier with pseudo-inverse covariance matrix
    • Raudys S, Duin R (1998) Expected classification error of the Fisher linear classifier with pseudo-inverse covariance matrix. Pattern Recognit Lett 19: 385-392.
    • (1998) Pattern Recognit Lett , vol.19 , pp. 385-392
    • Raudys, S.1    Duin, R.2
  • 69
    • 84887916087 scopus 로고
    • Regularized discriminant analysis
    • Friedman JH (1989) Regularized discriminant analysis. J Am Stat Ass 84: 165-175.
    • (1989) J Am Stat Ass , vol.84 , pp. 165-175
    • Friedman, J.H.1
  • 70
    • 29644438050 scopus 로고    scopus 로고
    • Statistical comparisons of classifiers over multiple data sets
    • Demšar J (2006) Statistical comparisons of classifiers over multiple data sets. J Mach Learn Res 7: 1-30.
    • (2006) J Mach Learn Res , vol.7 , pp. 1-30
    • Demšar, J.1
  • 72
    • 58349091262 scopus 로고    scopus 로고
    • Basal subtype and MAPK/ERK Kinase (MEK)-phosphoinositide 3-kinase feedback signaling determine susceptibility of breast cancer cells to MEK inhibition
    • Mirzoeva OK, Das D, Heiser LM, Bhattacharya S, Siwak D, et al. (2009) Basal subtype and MAPK/ERK Kinase (MEK)-phosphoinositide 3-kinase feedback signaling determine susceptibility of breast cancer cells to MEK inhibition. Cancer Res 69: 565-572.
    • (2009) Cancer Res , vol.69 , pp. 565-572
    • Mirzoeva, O.K.1    Das, D.2    Heiser, L.M.3    Bhattacharya, S.4    Siwak, D.5
  • 73
    • 33749030177 scopus 로고    scopus 로고
    • Pharmacogenomic predictor of sensitivity to preoperative chemotherapy with paclitaxel and fluorouracil, doxorubicin, and cyclophosphamide in breast cancer
    • Hess KR, Anderson K, Symmans WF, Valero V, Ibrahim N, et al. (2006) Pharmacogenomic predictor of sensitivity to preoperative chemotherapy with paclitaxel and fluorouracil, doxorubicin, and cyclophosphamide in breast cancer. J Clin Oncol 24: 4236-4244.
    • (2006) J Clin Oncol , vol.24 , pp. 4236-4244
    • Hess, K.R.1    Anderson, K.2    Symmans, W.F.3    Valero, V.4    Ibrahim, N.5
  • 74
    • 33751261643 scopus 로고    scopus 로고
    • Genetic reclassification of histologic grade delineates new clinical subtypes of breast cancer
    • Ivshina AV, George J, Senko O, Mow B, Putti TC, et al. (2006) Genetic reclassification of histologic grade delineates new clinical subtypes of breast cancer. Cancer Res 66: 10292-10301.
    • (2006) Cancer Res , vol.66 , pp. 10292-10301
    • Ivshina, A.V.1    George, J.2    Senko, O.3    Mow, B.4    Putti, T.C.5
  • 75
    • 26444546442 scopus 로고    scopus 로고
    • An expression signature for p53 status in human breast cancer predicts mutation status, transcriptional effects, and patient survival
    • Miller LD, Smeds J, George J, Vega VB, Vergara L, et al. (2005) An expression signature for p53 status in human breast cancer predicts mutation status, transcriptional effects, and patient survival. Proc Natl Acad Sci USA 102: 13550-13555.
    • (2005) Proc Natl Acad Sci USA , vol.102 , pp. 13550-13555
    • Miller, L.D.1    Smeds, J.2    George, J.3    Vega, V.B.4    Vergara, L.5
  • 76
    • 2942534096 scopus 로고    scopus 로고
    • Integrated modeling of clinical and gene expression information for personalized prediction of disease outcomes
    • Pittman J, Huang E, Dressman H, Horng CF, Cheng SH, et al. (2004) Integrated modeling of clinical and gene expression information for personalized prediction of disease outcomes. Proc Natl Acad Sci U S A 101: 8431-8436.
    • (2004) Proc Natl Acad Sci U S A , vol.101 , pp. 8431-8436
    • Pittman, J.1    Huang, E.2    Dressman, H.3    Horng, C.F.4    Cheng, S.H.5
  • 77
    • 33144462268 scopus 로고    scopus 로고
    • Gene expression profiling in breast cancer: Understanding the molecular basis of histologic grade to improve prognosis
    • Sotiriou C, Wirapati P, Loi S, Harris A, Fox S, et al. (2006) Gene expression profiling in breast cancer: understanding the molecular basis of histologic grade to improve prognosis. J Natl Cancer Inst 98: 262-272.
    • (2006) J Natl Cancer Inst , vol.98 , pp. 262-272
    • Sotiriou, C.1    Wirapati, P.2    Loi, S.3    Harris, A.4    Fox, S.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.