-
1
-
-
33947654952
-
Microscopic detection of thermogenesis in a single hela cell
-
Suzuki, M.; Tseeb, V.; Oyama, K.; Ishiwata, S. Microscopic Detection of Thermogenesis in a Single HeLa Cell. Biophys. J. 2007, 92, L46-L48.
-
(2007)
Biophys. J.
, vol.92
-
-
Suzuki, M.1
Tseeb, V.2
Oyama, K.3
Ishiwata, S.4
-
2
-
-
0031972672
-
Thermal imaging of receptor-activated heat production in single cells
-
Zohar, O.; Ikeda, M.; Shinagawa, H.; Inoue, H.; Nakamura, H.; Elbaum, D.; Alkon, D. L.; Yoshioka, T. Thermal Imaging of Receptor-Activated Heat Production in Single Cells. Biophys. J. 1998, 74, 82-89.
-
(1998)
Biophys. J.
, vol.74
, pp. 82-89
-
-
Zohar, O.1
Ikeda, M.2
Shinagawa, H.3
Inoue, H.4
Nakamura, H.5
Elbaum, D.6
Alkon, D.L.7
Yoshioka, T.8
-
3
-
-
33846701633
-
Thermometer Design at the Nanoscale
-
Lee, J.; Kotov, N. A. Thermometer Design at the Nanoscale. Nano Today 2007, 2, 48-51.
-
(2007)
Nano. Today
, vol.2
, pp. 48-51
-
-
Lee, J.1
Kotov, N.A.2
-
4
-
-
33745503257
-
A liquid ga-filled carbon nanotube: A miniaturized temperature sensor and electrical switch
-
Dorozhkin, P. S.; Tovstonog, S. V.; Golberg, D.; Zhan, J.; Ishikawa, Y.; Shiozawa, M.; Nakanishi, H.; Nakata, K.; Bando, Y. A Liquid Ga-Filled Carbon Nanotube: A Miniaturized Temperature Sensor and Electrical Switch. Small 2005, 1, 1088-1093.
-
(2005)
Small
, vol.1
, pp. 1088-1093
-
-
Dorozhkin, P.S.1
Tovstonog, S.V.2
Golberg, D.3
Zhan, J.4
Ishikawa, Y.5
Shiozawa, M.6
Nakanishi, H.7
Nakata, K.8
Bando, Y.9
-
5
-
-
0037034046
-
Carbon nanothermometer containing gallium
-
Gao, Y.; Bando, Y. Carbon Nanothermometer Containing Gallium. Nature 2002, 415, 599.
-
(2002)
Nature
, vol.415
, pp. 599
-
-
Gao, Y.1
Bando, Y.2
-
6
-
-
73949087049
-
Nanothermometer using single crystal silver nanospheres
-
Lan, Y.; Wang, H.; Chen, X.; Wang, D.; Chen, G.; Ren, Z. Nanothermometer Using Single Crystal Silver Nanospheres. Adv. Mater. 2009, 21, 4839-4844.
-
(2009)
Adv. Mater.
, vol.21
, pp. 4839-4844
-
-
Lan, Y.1
Wang, H.2
Chen, X.3
Wang, D.4
Chen, G.5
Ren, Z.6
-
7
-
-
67349108349
-
Development of quantum dot-mediated fluorescence thermometry for thermal therapies
-
Han, B.; Hanson, W. L.; Bensalah, K.; Tuncel, A.; Stern, J. M.; Cadeddu, J. A. Development of Quantum Dot-Mediated Fluorescence Thermometry for Thermal Therapies. Ann. Biomed. Eng. 2009, 37, 1230-1239.
-
(2009)
Ann. Biomed. Eng.
, vol.37
, pp. 1230-1239
-
-
Han, B.1
Hanson, W.L.2
Bensalah, K.3
Tuncel, A.4
Stern, J.M.5
Cadeddu, J.A.6
-
8
-
-
0345359252
-
Quantum-Dot optical temperature probes
-
Walker, G. W.; Sundar, V. C.; Rudzinski, C. M.; Wun, A. W.; Bawendi, M. G.; Nocera, D. G. Quantum-Dot Optical Temperature Probes. Appl. Phys. Lett. 2003, 83, 3555-3557.
-
(2003)
Appl. Phys. Lett.
, vol.83
, pp. 3555-3557
-
-
Walker, G.W.1
Sundar, V.C.2
Rudzinski, C.M.3
Wun, A.W.4
Bawendi, M.G.5
Nocera, D.G.6
-
9
-
-
70349156805
-
Lanthanide-Based luminescent hybrid materials
-
Binnemans, K. Lanthanide-Based Luminescent Hybrid Materials. Chem. Rev. 2009, 109, 4283-4374.
-
(2009)
Chem. Rev.
, vol.109
, pp. 4283-4374
-
-
Binnemans, K.1
-
10
-
-
0033532928
-
Fluorescent molecular thermometer based on the nickel(II) high-spin/low-spin interconversion
-
Engeser, M.; Fabbrizzi, L.; Licchelli, M.; Sacchi, D. A Fluorescent Molecular Thermometer Based on the Nickel (II) High-Spin/Low-Spin Interconversion. Chem. Commun. 1999, 1191-1192.
-
(1999)
Chem. Commun.
, pp. 1191-1192
-
-
Engeser, M.1
Fabbrizzi, L.2
Licchelli, M.3
Sacchi, D.A.4
-
11
-
-
48249104321
-
High-Spatial-resolution surface-temperature mapping using fluorescent thermometry
-
Löw, P.; Kim, B.; Takama, N.; Bergaud, C. High-Spatial-Resolution Surface-Temperature Mapping Using Fluorescent Thermometry. Small 2008, 4, 908-914.
-
(2008)
Small
, vol.4
, pp. 908-914
-
-
Löw, P.1
Kim, B.2
Takama, N.3
Bergaud, C.4
-
12
-
-
0037206723
-
Nanoparticle luminescence thermometry
-
Wang, S.; Westcott, S.; Chen, W. Nanoparticle Luminescence Thermometry. J. Phys. Chem. B 2002, 106, 11203-11209.
-
(2002)
J. Phys. Chem. B.
, vol.106
, pp. 11203-11209
-
-
Wang, S.1
Westcott, S.2
Chen, W.3
-
13
-
-
0029360729
-
The use of exogenous fluorescent probes for temperature measurements in single living cells
-
Chapman, C. F.; Liu, Y.; Sonek, G. J.; Tromberg, B. J. The Use of Exogenous Fluorescent Probes for Temperature Measurements in Single Living Cells. Photochem. Photobiol. 1995, 62, 416-425.
-
(1995)
Photochem. Photobiol.
, vol.62
, pp. 416-425
-
-
Chapman, C.F.1
Liu, Y.2
Sonek, G.J.3
Tromberg, B.J.4
-
14
-
-
77950859284
-
Hydrophilic fluorescent nanogel thermometer for intracellular thermometry
-
Gota, C.; Okabe, K.; Funatsu, T.; Harada, Y.; Uchiyama, S. Hydrophilic Fluorescent Nanogel Thermometer for Intracellular Thermometry. J. Am. Chem. Soc. 2009, 131, 2766-2767.
-
(2009)
J. Am. Chem. Soc.
, vol.131
, pp. 2766-2767
-
-
Gota, C.1
Okabe, K.2
Funatsu, T.3
Harada, Y.4
Uchiyama, S.5
-
15
-
-
27344451401
-
Scanning thermal imaging of microelectronic circuits with a fluorescent nanoprobe
-
184105-3
-
Aigouy, L.; Tessier, G.; Mortier, M.; Charlot, B. Scanning Thermal Imaging of Microelectronic Circuits with a Fluorescent Nanoprobe. Appl. Phys. Lett. 2005, 87, 184105-1-184105-3.
-
(2005)
Appl. Phys. Lett.
, vol.87
, pp. 184105-1
-
-
Aigouy, L.1
Tessier, G.2
Mortier, M.3
Charlot, B.4
-
16
-
-
3042600477
-
3 nanocrystals for thermometry: Influence of nanoenvironment on the sensitivity of a fluorescence based temperature sensor
-
3 Nanocrystals for Thermometry: Influence of Nanoenvironment on the Sensitivity of a Fluorescence Based Temperature Sensor. Appl. Phys. Lett. 2004, 84, 4753-4755.
-
(2004)
Appl. Phys. Lett.
, vol.84
, pp. 4753-4755
-
-
Alencar, M.A.R.C.1
Maciel, G.S.2
De Araújo, C.B.3
Patra, A.4
-
17
-
-
0042322971
-
Nanoscale thermometry via the fluorescence of YAG:Ce phosphor particles: Measurements from 7 to 77°C
-
Allison, S. W.; Gillies, G. T.; Rondinone, A. J.; Cates, M. R. Nanoscale Thermometry via the Fluorescence of YAG:Ce Phosphor Particles: Measurements from 7 to 77°C. Nanotechnoloav 2003, 14, 859-863.
-
(2003)
Nanotechnoloav
, vol.14
, pp. 859-863
-
-
Allison, S.W.1
Gillies, G.T.2
Rondinone, A.J.3
Cates, M.R.4
-
18
-
-
0242285578
-
Fluorescence intensity ratio technique for optical fiber point temperature sensing
-
Wade, S. A.; Collins, S. F.; Baxter, G. W. Fluorescence Intensity Ratio Technique for Optical Fiber Point Temperature Sensing. J. Appl. Phys. 2003, 94, 4743-4756.
-
(2003)
J. Appl. Phys.
, vol.94
, pp. 4743-4756
-
-
Wade, S.A.1
Collins, S.F.2
Baxter, G.W.3
-
20
-
-
37249077870
-
Upconversion fluorescence imaging of cells and small animals using lanthanide doped nanocrystals
-
Chatterjee, D. K.; Rufaihah, A. J.; Zhang, Y. Upconversion Fluorescence Imaging of Cells and Small Animals Using Lanthanide Doped Nanocrystals. Biomaterials 2008, 29, 937-943.
-
(2008)
Biomaterials
, vol.29
, pp. 937-943
-
-
Chatterjee, D.K.1
Rufaihah, A.J.2
Zhang, Y.3
-
21
-
-
67650456529
-
Upconverting luminescent nanomaterials: Application to in vivo bioimaging
-
Hilderbrand, S. A.; Shao, F.; Salthouse, C.; Mahmood, U.; Weissleder, R. Upconverting Luminescent Nanomaterials: Application to In Vivo Bioimaging. Chem. Commun. 2009, 4188-4190.
-
(2009)
Chem. Commun.
, pp. 4188-4190
-
-
Hilderbrand, S.A.1
Shao, F.2
Salthouse, C.3
Mahmood, U.4
Weissleder, R.5
-
22
-
-
65549126819
-
NIR-to-visible upconversion nanoparticles for fluorescent labeling and targeted delivery of siRNA
-
Jiang, S.; Zhang, Y.; Lim, K. M.; Sim, E. K. W.; Ye, L. NIR-to-Visible Upconversion Nanoparticles for Fluorescent Labeling and Targeted Delivery of siRNA. Nanotechnology 2009, 20, 155101/1-155101/9.
-
(2009)
Nanotechnology
, vol.20
-
-
Jiang, S.1
Zhang, Y.2
Lim, K.M.3
Sim, E.K.W.4
Ye, L.5
-
23
-
-
77953657410
-
3+ upconverting nanoparticles
-
3+ Upconverting Nanoparticles. Nanoscale 2010, 2, 495-498.
-
(2010)
Nanoscale
, vol.2
, pp. 495-498
-
-
Vetrone, F.1
Naccache, R.2
De La Fuente, J.A.3
Sanz-Rodríguez, F.4
Blazquez-Castro, A.5
Rodriguez, M.E.6
Jaque, D.7
Solé, G.J.8
Capobianco, J.A.9
-
24
-
-
63049112698
-
Recent advances in the chemistry of lanthanide-doped upconversion nanocrystals
-
Wang, F.; Liu, X. Recent Advances in the Chemistry of Lanthanide-Doped Upconversion Nanocrystals. Chem. Soc. Rev. 2009, 38, 976-989.
-
(2009)
Chem. Soc. Rev.
, vol.38
, pp. 976-989
-
-
Wang, F.1
Liu, X.2
-
25
-
-
67651216095
-
4:Yb, Er upconversion nanoparticles
-
4:Yb, Er Upconversion Nanoparticles. ACS Nano 2009, 3, 1580-1586.
-
(2009)
ACS Nano.
, vol.3
, pp. 1580-1586
-
-
Wang, M.1
Mi, C.-C.2
Wang, W.-X.3
Liu, C.-H.4
Wu, Y.-F.5
Xu, Z.-R.6
Mao, C.-B.7
Xu, S.-K.8
-
26
-
-
0742269503
-
Upconversion and anti-stokes processes with f and d ions in solids
-
Auzel, F. Upconversion and Anti-Stokes Processes with f and d Ions in Solids. Chem. Rev. 2004, 104, 139-173.
-
(2004)
Chem. Rev.
, vol.104
, pp. 139-173
-
-
Auzel, F.1
-
27
-
-
0033747389
-
Multiphoton microscopy in life sciences
-
Konig, K. Multiphoton Microscopy in Life Sciences. J. Microsc. 2000, 200, 83-104.
-
(2000)
J. Microsc
, vol.200
, pp. 83-104
-
-
Konig, K.1
-
28
-
-
70349493152
-
The active-core/active-shell approach: A strategy to enhance the upconversion luminescence in lanthanide-doped nanoparticles
-
Vetrone, F.; Naccache, R.; Mahalingam, V.; Morgan, C. G.; Capobianco, J. A. The Active-Core/Active-Shell Approach: A Strategy To Enhance the Upconversion Luminescence in Lanthanide-Doped Nanoparticles. Adv. Funct. Mater. 2009, 19, 2924-2929.
-
(2009)
Adv. Funct. Mater.
, vol.19
, pp. 2924-2929
-
-
Vetrone, F.1
Naccache, R.2
Mahalingam, V.3
Morgan, C.G.4
Capobianco, J.A.5
-
29
-
-
67650527018
-
3+ co-doped nanoparticles
-
3+ Co-doped Nanoparticles. Opt. Express 2009, 17, 11794-11798.
-
(2009)
Opt. Express
, vol.17
, pp. 11794-11798
-
-
Tikhomirov, V.K.1
Driesen, K.2
Rodriguez, V.D.3
Gredin, P.4
Mortier, M.5
Moshchalkov, V.V.6
-
30
-
-
65549107453
-
Scanning thermal imaging by near-field fluorescence spectroscopy
-
Saïdi, E.; Samson, B.; Aigouy, L.; Volz, S.; Low, P.; Bergaud, C.; Mortier, M. Scanning Thermal Imaging by Near-Field Fluorescence Spectroscopy. Nanotechnology 2009, 20, 115703/1-115703/8.
-
(2009)
Nanotechnology
, vol.20
-
-
Saïdi, E.1
Samson, B.2
Aigouy, L.3
Volz, S.4
Low, P.5
Bergaud, C.6
Mortier, M.7
|