메뉴 건너뛰기




Volumn 26, Issue 17, 2010, Pages 2085-2092

Dealing with sparse data in predicting outcomes of HIV combination therapies

Author keywords

[No Author keywords available]

Indexed keywords

HUMAN IMMUNODEFICIENCY VIRUS;

EID: 77955892900     PISSN: 13674803     EISSN: 14602059     Source Type: Journal    
DOI: 10.1093/bioinformatics/btq361     Document Type: Article
Times cited : (15)

References (19)
  • 1
    • 34147145974 scopus 로고    scopus 로고
    • Improved prediction of response to antiretroviral combination therapy using the genetic barrier to drug resistance
    • Altmann,A.et al. (2007) Improved prediction of response to antiretroviral combination therapy using the genetic barrier to drug resistance. Antivir. Ther., 12, 169-178.
    • (2007) Antivir. Ther. , vol.12 , pp. 169-178
    • Altmann, A.1
  • 2
    • 67149121192 scopus 로고    scopus 로고
    • Advantages of predicted phenotypes and statistical learning models in inferring virological response to antiretroviral therapy from hiv genotype
    • Altmann,A. et al. (2009a) Advantages of predicted phenotypes and statistical learning models in inferring virological response to antiretroviral therapy from hiv genotype. Antivir. Ther., 14, 273-283.
    • (2009) Antivir. Ther. , vol.14 , pp. 273-283
    • Altmann, A.1
  • 3
    • 65549132916 scopus 로고    scopus 로고
    • Predicting response to combination antiretroviral therapy: retrospective validation of geno2pheno-theo on a large clinical database
    • Altmann,A. et al. (2009b) Predicting response to combination antiretroviral therapy: retrospective validation of geno2pheno-theo on a large clinical database. J. Infect. Dis., 199, 999-1006.
    • (2009) J. Infect. Dis. , vol.199 , pp. 999-1006
    • Altmann, A.1
  • 4
    • 0043092351 scopus 로고    scopus 로고
    • Geno2pheno: Estimating phenotypic drug resistance from HIV-1 genotypes
    • Beerenwinkel,N. et al. (2003a) Geno2pheno: Estimating phenotypic drug resistance from HIV-1 genotypes. Nucleic Acids Res., 31, 3850-3855.
    • (2003) Nucleic Acids Res. , vol.31 , pp. 3850-3855
    • Beerenwinkel, N.1
  • 5
    • 0344808232 scopus 로고    scopus 로고
    • Methods for optimizing antiviral combination therapies
    • Beerenwinkel,N. et al. (2003b) Methods for optimizing antiviral combination therapies. Bioinformatics, 19, i16-i25.
    • (2003) Bioinformatics , vol.19
    • Beerenwinkel, N.1
  • 7
    • 47249117584 scopus 로고    scopus 로고
    • Modelled in vivo hiv fitness under drug selective pressure and estimated genetic barrier towards resistance are predictive for virological response
    • Deforche,K. et al. (2008) Modelled in vivo hiv fitness under drug selective pressure and estimated genetic barrier towards resistance are predictive for virological response. Antivir. Ther., 13, 399-407.
    • (2008) Antivir. Ther. , vol.13 , pp. 399-407
    • Deforche, K.1
  • 8
    • 0023710206 scopus 로고
    • Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach
    • DeLong,E. et al. (1988) Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics, 44, 837-845.
    • (1988) Biometrics , vol.44 , pp. 837-845
    • DeLong, E.1
  • 9
    • 0034419669 scopus 로고    scopus 로고
    • Regularization networks and support vector machines
    • Evgeniou,T. et al. (2000) Regularization networks and support vector machines. Adv. Comput. Math., 13, 1-50.
    • (2000) Adv. Comput. Math. , vol.13 , pp. 1-50
    • Evgeniou, T.1
  • 10
    • 59849127268 scopus 로고    scopus 로고
    • Update of the drug resistance mutations in HIV-1: December 2008
    • Johnson,V. et al. (2008) Update of the drug resistance mutations in HIV-1: December 2008. Top. HIV Med., 16, 138-145.
    • (2008) Top. HIV Med. , vol.16 , pp. 138-145
    • Johnson, V.1
  • 11
    • 33847375483 scopus 로고    scopus 로고
    • The development of artificial neural networks to predict virological response to combination HIV therapy
    • Larder,B. et al. (2007) The development of artificial neural networks to predict virological response to combination HIV therapy. Antivir. Ther., 12, 15-24.
    • (2007) Antivir. Ther. , vol.12 , pp. 15-24
    • Larder, B.1
  • 12
    • 0042044292 scopus 로고    scopus 로고
    • Combinatorial optimization in rapidly mutating drugresistant viruses
    • Lathrop,R. and Pazzani,M. (1999) Combinatorial optimization in rapidly mutating drugresistant viruses. J. Comb. Optim., 3, 301-320.
    • (1999) J. Comb. Optim. , vol.3 , pp. 301-320
    • Lathrop, R.1    Pazzani, M.2
  • 13
    • 44649088319 scopus 로고    scopus 로고
    • Trust region newton method for large-scale logistic regression
    • Lin,C. et al. (2008) Trust region newton method for large-scale logistic regression. J. Mach. Learn. Res., 9, 627-650.
    • (2008) J. Mach. Learn. Res. , vol.9 , pp. 627-650
    • Lin, C.1
  • 14
    • 33748878435 scopus 로고    scopus 로고
    • 'Common law' applied to treatment decisions for drug resistant HIV
    • Prosperi,M. et al. (2005) 'Common law' applied to treatment decisions for drug resistant HIV. Antivir. Ther., 10, S62.
    • (2005) Antivir. Ther. , vol.10
    • Prosperi, M.1
  • 15
    • 67649191714 scopus 로고    scopus 로고
    • Investigation of expert rule bases, logistic regression, and non-linear machine learning techniques for predicting response to antiretroviral treatment
    • Prosperi,M. et al. (2009) Investigation of expert rule bases, logistic regression, and non-linear machine learning techniques for predicting response to antiretroviral treatment. Antivir. Ther., 14, 433-442.
    • (2009) Antivir. Ther. , vol.14 , pp. 433-442
    • Prosperi, M.1
  • 16
    • 33746710954 scopus 로고    scopus 로고
    • Arevir: a secure platform for designing personalized antiretroviral therapies against HIV
    • Springer
    • Roomp,K. et al. (2006) Arevir: a secure platform for designing personalized antiretroviral therapies against HIV. In Lecture Notes in Computer Science: Data Integration in the Life Sciences, Vol. 4075, Springer, pp. 185-194.
    • (2006) Lecture Notes in Computer Science: Data Integration in the Life Sciences , vol.4075 , pp. 185-194
    • Roomp, K.1
  • 17
    • 46249127515 scopus 로고    scopus 로고
    • Selecting anti-hiv therapies based on a variety of genomic and clinical factors
    • Rosen-Zvi,M. et al. (2008) Selecting anti-hiv therapies based on a variety of genomic and clinical factors. In ISMB 2008 Conference Proceedings, Bioinformatics, Vo. 24, pp. i399-i406.
    • (2008) ISMB 2008 Conference Proceedings, Bioinformatics , vol.24
    • Rosen-Zvi, M.1
  • 18
    • 77955906153 scopus 로고    scopus 로고
    • UNAIDS/WHO AIDS Epidemic Update: December 2009. Available at
    • UNAIDS/WHO (2009) AIDS Epidemic Update: December 2009. Available at http://data.unaids.org/pub/Report/2009/JC1700_Epi_Update_2009_en.pdf
    • (2009)
  • 19
    • 4344707784 scopus 로고    scopus 로고
    • A neural network model using clinical cohort data accurately predicts virological response and identifies regimens with increased probability of success in treatment failures
    • Wang,D. et al. (2003) A neural network model using clinical cohort data accurately predicts virological response and identifies regimens with increased probability of success in treatment failures. Antivir. Ther., 8, S112.
    • (2003) Antivir. Ther. , vol.8
    • Wang, D.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.