메뉴 건너뛰기




Volumn 38, Issue 5, 2008, Pages 563-573

Usage of eigenvector methods to improve reliable classifier for Doppler ultrasound signals

Author keywords

Doppler ultrasound signals; Eigenvector methods; Probabilistic neural network; Recurrent neural network

Indexed keywords

DIAGNOSIS; DOPPLER EFFECT; EIGENVALUES AND EIGENFUNCTIONS; PROBABILISTIC LOGICS; SIGNAL ANALYSIS; ULTRASONICS;

EID: 42749088090     PISSN: 00104825     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.compbiomed.2008.02.003     Document Type: Article
Times cited : (8)

References (23)
  • 2
    • 0031987311 scopus 로고    scopus 로고
    • A brief history of Doppler ultrasound in the diagnosis of peripheral vascular disease
    • Sigel B. A brief history of Doppler ultrasound in the diagnosis of peripheral vascular disease. Ultrasound Med. Biol. 24 (1998) 169-176
    • (1998) Ultrasound Med. Biol. , vol.24 , pp. 169-176
    • Sigel, B.1
  • 3
    • 0038359450 scopus 로고    scopus 로고
    • Detection of ophthalmic artery stenosis by least-mean squares backpropagation neural network
    • Güler I., and Übeyli E.D. Detection of ophthalmic artery stenosis by least-mean squares backpropagation neural network. Comput. Biol. Med. 33 4 (2003) 333-343
    • (2003) Comput. Biol. Med. , vol.33 , Issue.4 , pp. 333-343
    • Güler, I.1    Übeyli, E.D.2
  • 4
    • 27744513132 scopus 로고    scopus 로고
    • Feature extraction from Doppler ultrasound signals for automated diagnostic systems
    • Übeyli E.D., and Güler I. Feature extraction from Doppler ultrasound signals for automated diagnostic systems. Comput. Biol. Med. 35 9 (2005) 735-764
    • (2005) Comput. Biol. Med. , vol.35 , Issue.9 , pp. 735-764
    • Übeyli, E.D.1    Güler, I.2
  • 5
    • 0023733016 scopus 로고
    • A comparative study and assessment of Doppler ultrasound spectral estimation techniques part II: methods and results
    • Vaitkus P.J., Cobbold R.S.C., and Johnston K.W. A comparative study and assessment of Doppler ultrasound spectral estimation techniques part II: methods and results. Ultrasound Med. Biol. 14 (1988) 673-688
    • (1988) Ultrasound Med. Biol. , vol.14 , pp. 673-688
    • Vaitkus, P.J.1    Cobbold, R.S.C.2    Johnston, K.W.3
  • 7
    • 0033009092 scopus 로고    scopus 로고
    • Artificial neural network analysis of common femoral artery Doppler shift signals: classification of proximal disease
    • Wright I.A., and Gough N.A.J. Artificial neural network analysis of common femoral artery Doppler shift signals: classification of proximal disease. Ultrasound Med. Biol. 24 (1999) 735-743
    • (1999) Ultrasound Med. Biol. , vol.24 , pp. 735-743
    • Wright, I.A.1    Gough, N.A.J.2
  • 8
    • 0025517457 scopus 로고
    • Noninvasive detection of coronary stenoses before and after angioplasty using eigenvector methods
    • Akay M., Semmlow J.L., Welkowitz W., Bauer M.D., and Kostis J.B. Noninvasive detection of coronary stenoses before and after angioplasty using eigenvector methods. IEEE Trans. Biomed. Eng. 37 11 (1990) 1095-1104
    • (1990) IEEE Trans. Biomed. Eng. , vol.37 , Issue.11 , pp. 1095-1104
    • Akay, M.1    Semmlow, J.L.2    Welkowitz, W.3    Bauer, M.D.4    Kostis, J.B.5
  • 9
    • 1542679215 scopus 로고    scopus 로고
    • Comparison of eigenvector methods with classical and model-based methods in analysis of internal carotid arterial Doppler signals
    • Übeyli E.D., and Güler I. Comparison of eigenvector methods with classical and model-based methods in analysis of internal carotid arterial Doppler signals. Comput. Biol. Med. 33 6 (2003) 473-493
    • (2003) Comput. Biol. Med. , vol.33 , Issue.6 , pp. 473-493
    • Übeyli, E.D.1    Güler, I.2
  • 10
    • 0025206332 scopus 로고
    • Probabilistic neural networks
    • Specht D.F. Probabilistic neural networks. Neural Networks 3 1 (1990) 109-118
    • (1990) Neural Networks , vol.3 , Issue.1 , pp. 109-118
    • Specht, D.F.1
  • 11
    • 0026188751 scopus 로고
    • Learning vector quantization for the probabilistic neural network
    • Burrascano P. Learning vector quantization for the probabilistic neural network. IEEE Trans. Neural Networks 2 4 (1991) 458-461
    • (1991) IEEE Trans. Neural Networks , vol.2 , Issue.4 , pp. 458-461
    • Burrascano, P.1
  • 12
    • 0033990625 scopus 로고    scopus 로고
    • Recurrent neural network based prediction of epileptic seizures in intra- and extracranial EEG
    • Petrosian A., Prokhorov D., Homan R., Dasheiff R., and Wunsch II D. Recurrent neural network based prediction of epileptic seizures in intra- and extracranial EEG. Neurocomputing 30 (2000) 201-218
    • (2000) Neurocomputing , vol.30 , pp. 201-218
    • Petrosian, A.1    Prokhorov, D.2    Homan, R.3    Dasheiff, R.4    Wunsch II, D.5
  • 13
    • 0034923224 scopus 로고    scopus 로고
    • Recurrent neural network-based approach for early recognition of Alzheimer's disease in EEG
    • Petrosian A.A., Prokhorov D.V., Lajara-Nanson W., and Schiffer R.B. Recurrent neural network-based approach for early recognition of Alzheimer's disease in EEG. Clin. Neurophysiol. 112 8 (2001) 1378-1387
    • (2001) Clin. Neurophysiol. , vol.112 , Issue.8 , pp. 1378-1387
    • Petrosian, A.A.1    Prokhorov, D.V.2    Lajara-Nanson, W.3    Schiffer, R.B.4
  • 14
    • 1542786173 scopus 로고    scopus 로고
    • Intracranial pressure model in intensive care unit using a simple recurrent neural network through time
    • Shieh J.-S., Chou C.-F., Huang S.-J., and Kao M.-C. Intracranial pressure model in intensive care unit using a simple recurrent neural network through time. Neurocomputing 57 (2004) 239-256
    • (2004) Neurocomputing , vol.57 , pp. 239-256
    • Shieh, J.-S.1    Chou, C.-F.2    Huang, S.-J.3    Kao, M.-C.4
  • 15
    • 24144470790 scopus 로고    scopus 로고
    • Recurrent neural networks employing Lyapunov exponents for EEG signals classification
    • Güler N.F., Übeyli E.D., and Güler I. Recurrent neural networks employing Lyapunov exponents for EEG signals classification. Expert Syst. Appl. 29 3 (2005) 506-514
    • (2005) Expert Syst. Appl. , vol.29 , Issue.3 , pp. 506-514
    • Güler, N.F.1    Übeyli, E.D.2    Güler, I.3
  • 16
    • 26444565569 scopus 로고
    • Finding structure in time
    • Elman J.L. Finding structure in time. Cognitive Sci. 14 2 (1990) 179-211
    • (1990) Cognitive Sci. , vol.14 , Issue.2 , pp. 179-211
    • Elman, J.L.1
  • 17
    • 0000442791 scopus 로고
    • Generalization of back-propagation to recurrent neural networks
    • Pineda F.J. Generalization of back-propagation to recurrent neural networks. Phys. Rev. Lett. 59 19 (1987) 2229-2232
    • (1987) Phys. Rev. Lett. , vol.59 , Issue.19 , pp. 2229-2232
    • Pineda, F.J.1
  • 19
    • 0001024110 scopus 로고
    • First- and second-order methods for learning: between steepest descent and Newton's method
    • Battiti R. First- and second-order methods for learning: between steepest descent and Newton's method. Neural Computation 4 (1992) 141-166
    • (1992) Neural Computation , vol.4 , pp. 141-166
    • Battiti, R.1
  • 20
    • 0028543366 scopus 로고
    • Training feedforward networks with the Marquardt algorithm
    • Hagan M.T., and Menhaj M.B. Training feedforward networks with the Marquardt algorithm. IEEE Trans. Neural Networks 5 6 (1994) 989-993
    • (1994) IEEE Trans. Neural Networks , vol.5 , Issue.6 , pp. 989-993
    • Hagan, M.T.1    Menhaj, M.B.2
  • 21
    • 0037411433 scopus 로고    scopus 로고
    • Neural network analysis of internal carotid arterial Doppler signals: predictions of stenosis and occlusion
    • Übeyli E.D., and Güler I. Neural network analysis of internal carotid arterial Doppler signals: predictions of stenosis and occlusion. Expert Syst. Appl. 25 1 (2003) 1-13
    • (2003) Expert Syst. Appl. , vol.25 , Issue.1 , pp. 1-13
    • Übeyli, E.D.1    Güler, I.2
  • 22
    • 15744394888 scopus 로고    scopus 로고
    • Improving medical diagnostic accuracy of ultrasound Doppler signals by combining neural network models
    • Übeyli E.D., and Güler I. Improving medical diagnostic accuracy of ultrasound Doppler signals by combining neural network models. Comput. Biol. Med. 35 6 (2005) 533-554
    • (2005) Comput. Biol. Med. , vol.35 , Issue.6 , pp. 533-554
    • Übeyli, E.D.1    Güler, I.2
  • 23
    • 16844367664 scopus 로고    scopus 로고
    • A mixture of experts network structure for modelling Doppler ultrasound blood flow signals
    • Güler I., and Übeyli E.D. A mixture of experts network structure for modelling Doppler ultrasound blood flow signals. Comput. Biol. Med. 35 7 (2005) 565-582
    • (2005) Comput. Biol. Med. , vol.35 , Issue.7 , pp. 565-582
    • Güler, I.1    Übeyli, E.D.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.