메뉴 건너뛰기




Volumn 39, Issue 8, 2009, Pages 733-741

Statistics over features: EEG signals analysis

Author keywords

Eigenvector methods; Electroencephalogram (EEG) signals; Feature extraction selection; Lyapunov exponents; Wavelet coefficients

Indexed keywords

EIGENVECTOR METHODS; ELECTROENCEPHALOGRAM (EEG) SIGNALS; FEATURE EXTRACTION/SELECTION; LYAPUNOV EXPONENTS; WAVELET COEFFICIENTS;

EID: 67649601026     PISSN: 00104825     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.compbiomed.2009.06.001     Document Type: Article
Times cited : (97)

References (35)
  • 1
    • 0030265798 scopus 로고    scopus 로고
    • The evolution of complexity in human brain development: an EEG study
    • Lindenberg A.M. The evolution of complexity in human brain development: an EEG study. Electroencephalography and Clinical Neurophysiology 99 5 (1996) 405-411
    • (1996) Electroencephalography and Clinical Neurophysiology , vol.99 , Issue.5 , pp. 405-411
    • Lindenberg, A.M.1
  • 3
    • 0037441741 scopus 로고    scopus 로고
    • Analysis of EEG records in an epileptic patient using wavelet transform
    • Adeli H., Zhou Z., and Dadmehr N. Analysis of EEG records in an epileptic patient using wavelet transform. Journal of Neuroscience Methods 123 1 (2003) 69-87
    • (2003) Journal of Neuroscience Methods , vol.123 , Issue.1 , pp. 69-87
    • Adeli, H.1    Zhou, Z.2    Dadmehr, N.3
  • 4
    • 0031141135 scopus 로고    scopus 로고
    • Classification of EEG signals using the wavelet transform
    • Hazarika N., Chen J.Z., Tsoi A.C., and Sergejew A. Classification of EEG signals using the wavelet transform. Signal Processing 59 1 (1997) 61-72
    • (1997) Signal Processing , vol.59 , Issue.1 , pp. 61-72
    • Hazarika, N.1    Chen, J.Z.2    Tsoi, A.C.3    Sergejew, A.4
  • 5
    • 24144470790 scopus 로고    scopus 로고
    • Recurrent neural networks employing Lyapunov exponents for EEG signals classification
    • Güler N.F., Übeyli E.D., and Güler I. Recurrent neural networks employing Lyapunov exponents for EEG signals classification. Expert Systems with Applications 29 3 (2005) 506-514
    • (2005) Expert Systems with Applications , vol.29 , Issue.3 , pp. 506-514
    • Güler, N.F.1    Übeyli, E.D.2    Güler, I.3
  • 6
    • 26944458497 scopus 로고    scopus 로고
    • Adaptive neuro-fuzzy inference system for classification of EEG signals using wavelet coefficients
    • Güler I., and Übeyli E.D. Adaptive neuro-fuzzy inference system for classification of EEG signals using wavelet coefficients. Journal of Neuroscience Methods 148 2 (2005) 113-121
    • (2005) Journal of Neuroscience Methods , vol.148 , Issue.2 , pp. 113-121
    • Güler, I.1    Übeyli, E.D.2
  • 7
    • 33746286608 scopus 로고    scopus 로고
    • Analysis of EEG signals using Lyapunov exponents
    • Übeyli E.D. Analysis of EEG signals using Lyapunov exponents. Neural Network World 16 3 (2006) 257-273
    • (2006) Neural Network World , vol.16 , Issue.3 , pp. 257-273
    • Übeyli, E.D.1
  • 8
    • 33846095446 scopus 로고    scopus 로고
    • Features extracted by eigenvector methods for detecting variability of EEG signals
    • Übeyli E.D., and Güler I. Features extracted by eigenvector methods for detecting variability of EEG signals. Pattern Recognition Letters 28 5 (2007) 592-603
    • (2007) Pattern Recognition Letters , vol.28 , Issue.5 , pp. 592-603
    • Übeyli, E.D.1    Güler, I.2
  • 10
    • 37349024109 scopus 로고    scopus 로고
    • Wavelet/mixture of experts network structure for EEG signals classification
    • Übeyli E.D. Wavelet/mixture of experts network structure for EEG signals classification. Expert Systems with Applications 34 3 (2008) 1954-1962
    • (2008) Expert Systems with Applications , vol.34 , Issue.3 , pp. 1954-1962
    • Übeyli, E.D.1
  • 11
    • 37049007663 scopus 로고    scopus 로고
    • Analysis of EEG signals by combining eigenvector methods and multiclass support vector machines
    • Übeyli E.D. Analysis of EEG signals by combining eigenvector methods and multiclass support vector machines. Computers in Biology and Medicine 38 1 (2008) 14-22
    • (2008) Computers in Biology and Medicine , vol.38 , Issue.1 , pp. 14-22
    • Übeyli, E.D.1
  • 12
    • 54449097115 scopus 로고    scopus 로고
    • Implementing eigenvector methods/probabilistic neural networks for analysis of EEG signals
    • Übeyli E.D. Implementing eigenvector methods/probabilistic neural networks for analysis of EEG signals. Neural Networks 21 9 (2008) 1410-1417
    • (2008) Neural Networks , vol.21 , Issue.9 , pp. 1410-1417
    • Übeyli, E.D.1
  • 13
    • 56549122554 scopus 로고    scopus 로고
    • Analysis of EEG signals by implementing eigenvector methods/recurrent neural networks
    • Übeyli E.D. Analysis of EEG signals by implementing eigenvector methods/recurrent neural networks. Digital Signal Processing 19 1 (2009) 134-143
    • (2009) Digital Signal Processing , vol.19 , Issue.1 , pp. 134-143
    • Übeyli, E.D.1
  • 14
    • 56349123198 scopus 로고    scopus 로고
    • Decision support systems for time-varying biomedical signals: EEG signals classification
    • Übeyli E.D. Decision support systems for time-varying biomedical signals: EEG signals classification. Expert Systems with Applications 36 2 (2009) 2275-2284
    • (2009) Expert Systems with Applications , vol.36 , Issue.2 , pp. 2275-2284
    • Übeyli, E.D.1
  • 15
    • 58549111381 scopus 로고    scopus 로고
    • Combined neural network model employing wavelet coefficients for EEG signals classification
    • Übeyli E.D. Combined neural network model employing wavelet coefficients for EEG signals classification. Digital Signal Processing 19 2 (2009) 297-308
    • (2009) Digital Signal Processing , vol.19 , Issue.2 , pp. 297-308
    • Übeyli, E.D.1
  • 16
    • 67649134786 scopus 로고    scopus 로고
    • Probabilistic neural networks combined with wavelet coefficients for analysis of EEG signals
    • Übeyli E.D. Probabilistic neural networks combined with wavelet coefficients for analysis of EEG signals. Expert Systems 26 2 (2009) 147-159
    • (2009) Expert Systems , vol.26 , Issue.2 , pp. 147-159
    • Übeyli, E.D.1
  • 17
    • 67649626328 scopus 로고    scopus 로고
    • Modified mixture of experts employing eigenvector methods and Lyapunov exponents for analysis of EEG signals
    • in press
    • E.D. Übeyli, Modified mixture of experts employing eigenvector methods and Lyapunov exponents for analysis of EEG signals, Expert Systems (2009), in press.
    • (2009) Expert Systems
    • Übeyli, E.D.1
  • 18
    • 0842310823 scopus 로고    scopus 로고
    • A neural-network-based detection of epilepsy
    • Nigam V.P., and Graupe D. A neural-network-based detection of epilepsy. Neurological Research 26 1 (2004) 55-60
    • (2004) Neurological Research , vol.26 , Issue.1 , pp. 55-60
    • Nigam, V.P.1    Graupe, D.2
  • 19
    • 0032834572 scopus 로고    scopus 로고
    • Non-linear time series analysis of intracranial EEG recordings in patients with epilepsy-an overview
    • Lehnertz K. Non-linear time series analysis of intracranial EEG recordings in patients with epilepsy-an overview. International Journal of Psychophysiology 34 1 (1999) 45-52
    • (1999) International Journal of Psychophysiology , vol.34 , Issue.1 , pp. 45-52
    • Lehnertz, K.1
  • 21
    • 0032116702 scopus 로고    scopus 로고
    • Dynamics extraction in multivariate biomedical time series
    • Silipo R., Deco G., Vergassola R., and Bartsch H. Dynamics extraction in multivariate biomedical time series. Biological Cybernetics 79 1 (1998) 15-27
    • (1998) Biological Cybernetics , vol.79 , Issue.1 , pp. 15-27
    • Silipo, R.1    Deco, G.2    Vergassola, R.3    Bartsch, H.4
  • 22
    • 0025482241 scopus 로고
    • The wavelet transform, time-frequency localization and signal analysis
    • Daubechies I. The wavelet transform, time-frequency localization and signal analysis. IEEE Transactions on Information Theory 36 5 (1990) 961-1005
    • (1990) IEEE Transactions on Information Theory , vol.36 , Issue.5 , pp. 961-1005
    • Daubechies, I.1
  • 23
    • 0036825521 scopus 로고    scopus 로고
    • On the use of the wavelet decomposition for time series prediction
    • Soltani S. On the use of the wavelet decomposition for time series prediction. Neurocomputing 48 (2002) 267-277
    • (2002) Neurocomputing , vol.48 , pp. 267-277
    • Soltani, S.1
  • 24
    • 0031139676 scopus 로고    scopus 로고
    • Wavelet applications in medicine
    • Akay M. Wavelet applications in medicine. IEEE Spectrum 34 5 (1997) 50-56
    • (1997) IEEE Spectrum , vol.34 , Issue.5 , pp. 50-56
    • Akay, M.1
  • 25
    • 0030127507 scopus 로고    scopus 로고
    • A review of wavelets in biomedical applications
    • Unser M., and Aldroubi A. A review of wavelets in biomedical applications. Proceedings of the IEEE 84 4 (1996) 626-638
    • (1996) Proceedings of the IEEE , vol.84 , Issue.4 , pp. 626-638
    • Unser, M.1    Aldroubi, A.2
  • 28
    • 39549089504 scopus 로고    scopus 로고
    • Statistics over features for internal carotid arterial disorders detection
    • Übeyli E.D. Statistics over features for internal carotid arterial disorders detection. Computers in Biology and Medicine 38 3 (2008) 361-371
    • (2008) Computers in Biology and Medicine , vol.38 , Issue.3 , pp. 361-371
    • Übeyli, E.D.1
  • 29
    • 0035682573 scopus 로고    scopus 로고
    • Indications of nonlinear deterministic and finite-dimensional structures in time series of brain electrical activity: dependence on recording region and brain state
    • Andrzejak R.G., Lehnertz K., Mormann F., Rieke C., David P., and Elger C.E. Indications of nonlinear deterministic and finite-dimensional structures in time series of brain electrical activity: dependence on recording region and brain state. Physical Review E 64 (2001) 061907
    • (2001) Physical Review E , vol.64 , pp. 061907
    • Andrzejak, R.G.1    Lehnertz, K.2    Mormann, F.3    Rieke, C.4    David, P.5    Elger, C.E.6
  • 30
    • 84873070535 scopus 로고    scopus 로고
    • available under
    • EEG time series are available under 〈http://www.meb.uni-bonn.de/epileptologie/science/physik/eegdata.html〉.
    • EEG time series are
  • 31
    • 0029191714 scopus 로고
    • Detection of signals in chaos
    • Haykin S., and Li X.B. Detection of signals in chaos. Proceedings of the IEEE 83 1 (1995) 95-122
    • (1995) Proceedings of the IEEE , vol.83 , Issue.1 , pp. 95-122
    • Haykin, S.1    Li, X.B.2
  • 32
    • 0001731208 scopus 로고
    • Lyapunov exponents in chaotic systems: their importance and their evaluation using observed data
    • Abarbanel H.D.I., Brown R., and Kennel M.B. Lyapunov exponents in chaotic systems: their importance and their evaluation using observed data. International Journal of Modern Physics B 5 9 (1991) 1347-1375
    • (1991) International Journal of Modern Physics B , vol.5 , Issue.9 , pp. 1347-1375
    • Abarbanel, H.D.I.1    Brown, R.2    Kennel, M.B.3
  • 34
    • 0028543366 scopus 로고
    • Training feedforward networks with the Marquardt algorithm
    • Hagan M.T., and Menhaj M.B. Training feedforward networks with the Marquardt algorithm. IEEE Transactions on Neural Networks 5 6 (1994) 989-993
    • (1994) IEEE Transactions on Neural Networks , vol.5 , Issue.6 , pp. 989-993
    • Hagan, M.T.1    Menhaj, M.B.2
  • 35
    • 0001024110 scopus 로고
    • First- and second-order methods for learning: between steepest descent and Newton's method
    • Battiti R. First- and second-order methods for learning: between steepest descent and Newton's method. Neural Computation 4 (1992) 141-166
    • (1992) Neural Computation , vol.4 , pp. 141-166
    • Battiti, R.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.