메뉴 건너뛰기




Volumn 21, Issue 8, 2010, Pages 1326-1338

An extension of the standard mixture model for image segmentation

Author keywords

Gradient method; image segmentation; spatial constraints; standard Gaussian mixture model

Indexed keywords

GAUSSIAN MIXTURE MODEL; GAUSSIAN MIXTURE MODELING; GRAY-SCALE IMAGES; IMAGE PIXELS; LOG LIKELIHOOD; MARKOV RANDOM FIELD MODELS; MIXTURE MODEL; MODEL PARAMETERS; SEGMENTATION RESULTS; SPATIAL CONSTRAINTS; SPATIAL DEPENDENCE; SPATIAL RELATIONSHIPS;

EID: 77955515108     PISSN: 10459227     EISSN: None     Source Type: Journal    
DOI: 10.1109/TNN.2010.2054109     Document Type: Article
Times cited : (64)

References (43)
  • 1
    • 0000013152 scopus 로고
    • On the statistical analysis of dirty pictures
    • J. Besag, "On the statistical analysis of dirty pictures," J. Roy. Statist. Soc. Ser. B, vol.48, no.3, pp. 259-302, 1986.
    • (1986) J. Roy. Statist. Soc. Ser. B , vol.48 , Issue.3 , pp. 259-302
    • Besag, J.1
  • 4
    • 15344351001 scopus 로고    scopus 로고
    • A spatially constrained mixture model for image segmentation
    • Mar.
    • K. Blekas, A. Likas, N. P. Galatsanos, and I. E. Lagaris, "A spatially constrained mixture model for image segmentation," IEEE Trans. Neural Netw., vol.16, no.2, pp. 494-498, Mar. 2005.
    • (2005) IEEE Trans. Neural Netw , vol.16 , Issue.2 , pp. 494-498
    • Blekas, K.1    Likas, A.2    Galatsanos, N.P.3    Lagaris, I.E.4
  • 5
    • 33750512945 scopus 로고    scopus 로고
    • Fast and robust fuzzy c-means clustering algorithms incorporating local information for image segmentation
    • W. Cai, S. Chen, and D. Zhang, "Fast and robust fuzzy c-means clustering algorithms incorporating local information for image segmentation," Pattern Recognit., vol.40, no.3, pp. 825-838, 2007.
    • (2007) Pattern Recognit , vol.40 , Issue.3 , pp. 825-838
    • Cai, W.1    Chen, S.2    Zhang, D.3
  • 6
    • 0036684357 scopus 로고    scopus 로고
    • Blobworld: Image segmentation using expectation-maximization and its application to image querying
    • Aug.
    • C. Carson, S. Belongie, H. Greenspan, and J. Malik, "Blobworld: Image segmentation using expectation-maximization and its application to image querying," IEEE Trans. Pattern Anal. Mach. Intell., vol.24, no.8, pp. 1026-1038, Aug. 2002.
    • (2002) IEEE Trans. Pattern Anal. Mach. Intell , vol.24 , Issue.8 , pp. 1026-1038
    • Carson, C.1    Belongie, S.2    Greenspan, H.3    Malik, J.4
  • 7
    • 0037209490 scopus 로고    scopus 로고
    • EM procedures using mean field-like approximations for Markov model-based image segmentation
    • G. Celeux, F. Forbes, and N. Peyrard, "EM procedures using mean field-like approximations for Markov model-based image segmentation," Pattern Recognit., vol.36, no.1, pp. 131-144, 2003.
    • (2003) Pattern Recognit , vol.36 , Issue.1 , pp. 131-144
    • Celeux, G.1    Forbes, F.2    Peyrard, N.3
  • 8
    • 54349092861 scopus 로고    scopus 로고
    • A fuzzy clustering approach toward hidden Markov random field models for enhanced spatially constrained image segmentation
    • Oct.
    • S. P. Chatzis and T. A. Varvarigou, "A fuzzy clustering approach toward hidden Markov random field models for enhanced spatially constrained image segmentation," IEEE Trans. Fuzzy Syst., vol.16, no.5, pp. 1351- 1361, Oct. 2008.
    • (2008) IEEE Trans. Fuzzy Syst , vol.16 , Issue.5 , pp. 1351-1361
    • Chatzis, S.P.1    Varvarigou, T.A.2
  • 9
    • 0026220222 scopus 로고
    • Partial volume tissue classification of multichannel magnetic resonance images: A mixel model
    • Sep.
    • H. S. Choi, D. R. Haynor, and Y. Kim, "Partial volume tissue classification of multichannel magnetic resonance images: A mixel model," IEEE Trans. Med. Imaging, vol.10, no.3, pp. 395-407, Sep. 1991.
    • (1991) IEEE Trans. Med. Imaging , vol.10 , Issue.3 , pp. 395-407
    • Choi, H.S.1    Haynor, D.R.2    Kim, Y.3
  • 10
    • 0013350589 scopus 로고    scopus 로고
    • Spatial fuzzy clustering using em and Markov random fields
    • M. Dang and G. Govaert, "Spatial fuzzy clustering using EM and Markov random fields," Int. J. Syst. Res. Inform. Sci., vol.8, no.4, pp. 183-202, 1998.
    • (1998) Int. J. Syst. Res. Inform. Sci , vol.8 , Issue.4 , pp. 183-202
    • Dang, M.1    Govaert, G.2
  • 11
    • 34248678480 scopus 로고    scopus 로고
    • A spatially constrained generative model and an em algorithm for image segmentation
    • May
    • A. Diplaros, N. Vlassis, and T. Gevers, "A spatially constrained generative model and an EM algorithm for image segmentation," IEEE Trans. Neural Netw., vol.18, no.3, pp. 798-808, May 2007.
    • (2007) IEEE Trans. Neural Netw , vol.18 , Issue.3 , pp. 798-808
    • Diplaros, A.1    Vlassis, N.2    Gevers, T.3
  • 12
    • 0036522404 scopus 로고    scopus 로고
    • Unsupervised learning of finite mixture models
    • Mar.
    • M. A. T. Figueiredo and A. K. Jain, "Unsupervised learning of finite mixture models," IEEE Trans. Pattern Anal. Mach. Intell., vol.24, no.3, pp. 381-396, Mar. 2002.
    • (2002) IEEE Trans. Pattern Anal. Mach. Intell , vol.24 , Issue.3 , pp. 381-396
    • Figueiredo, M.A.T.1    Jain, A.K.2
  • 13
    • 0038387419 scopus 로고    scopus 로고
    • Unsupervised classification of radar images using hidden Markov chains and hidden Markov random fields
    • Mar.
    • R. Fjortoft, Y. Delignon, W. Pieczynski, M. Sigelle, and F. Tupin, "Unsupervised classification of radar images using hidden Markov chains and hidden Markov random fields," IEEE Trans. Geosci. Remote Sens., vol.41, no.3, pp. 675-686, Mar. 2003.
    • (2003) IEEE Trans. Geosci. Remote Sens , vol.41 , Issue.3 , pp. 675-686
    • Fjortoft, R.1    Delignon, Y.2    Pieczynski, W.3    Sigelle, M.4    Tupin, F.5
  • 14
    • 0141613707 scopus 로고    scopus 로고
    • Hidden Markov random field model selection criteria based on mean field-like approximations
    • Sep.
    • F. Forbes and N. Peyrard, "Hidden Markov random field model selection criteria based on mean field-like approximations," IEEE Trans. Pattern Anal. Mach. Intell., vol.25, no.9, pp. 1089-1101, Sep. 2003.
    • (2003) IEEE Trans. Pattern Anal. Mach. Intell , vol.25 , Issue.9 , pp. 1089-1101
    • Forbes, F.1    Peyrard, N.2
  • 15
    • 0021518209 scopus 로고
    • Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images
    • Nov.
    • S. Geman and D. Geman, "Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images," IEEE Trans. Pattern Anal. Mach. Intell., vol.PAMI-6, no.6, pp. 721-741, Nov. 1984.
    • (1984) IEEE Trans. Pattern Anal. Mach. Intell , vol.PAMI-6 , Issue.6 , pp. 721-741
    • Geman, S.1    Geman, D.2
  • 16
    • 32044457458 scopus 로고    scopus 로고
    • A study of Gaussian mixture models of color and texture features for image classification and segmentation
    • P. Haim, F. Joseph, and J. Ian, "A study of Gaussian mixture models of color and texture features for image classification and segmentation," Pattern Recognit., vol.39, no.4, pp. 695-706, 2006.
    • (2006) Pattern Recognit , vol.39 , Issue.4 , pp. 695-706
    • Haim, P.1    Joseph, F.2    Ian, J.3
  • 18
    • 33646590894 scopus 로고    scopus 로고
    • Discriminative random fields
    • S. Kumar and M. Hebert, "Discriminative random fields," Int. J. Comput. Vision, vol.68, no.2, pp. 179-201, 2006.
    • (2006) Int. J. Comput. Vision , vol.68 , Issue.2 , pp. 179-201
    • Kumar, S.1    Hebert, M.2
  • 19
    • 0344120654 scopus 로고    scopus 로고
    • Discriminative random fields: A discriminative framework for contexual interaction in classification
    • Oct.
    • S. Kumar and M. Hebert, "Discriminative random fields: A discriminative framework for contexual interaction in classification," in Proc. IEEE Conf. Comput. Vision, Oct. 2003, pp. 1150-1157.
    • (2003) Proc. IEEE Conf. Comput. Vision , pp. 1150-1157
    • Kumar, S.1    Hebert, M.2
  • 20
    • 0033878097 scopus 로고    scopus 로고
    • Discrete Markov image modeling and inference on the quadtree
    • May
    • J. M. Laferte, P. Perez, and F. Heitz, "Discrete Markov image modeling and inference on the quadtree," IEEE Trans. Image Process., vol.9, no.3, pp. 390-404, May 2000.
    • (2000) IEEE Trans. Image Process , vol.9 , Issue.3 , pp. 390-404
    • Laferte, J.M.1    Perez, P.2    Heitz, F.3
  • 21
    • 0142192295 scopus 로고    scopus 로고
    • Conditional random fields: Probabilistic models for segmenting and labeling sequence data
    • Jun.
    • J. Lafferty, A. McCallum, and F. Pereira, "Conditional random fields: Probabilistic models for segmenting and labeling sequence data," in Proc. Int. Conf. Mach. Learning, Jun. 2001, pp. 282-289.
    • (2001) Proc. Int. Conf. Mach. Learning , pp. 282-289
    • Lafferty, J.1    McCallum, A.2    Pereira, F.3
  • 22
    • 33646456481 scopus 로고    scopus 로고
    • Support vector random fields for spatial classification
    • C. H. Lee, R. Greiner, and M. Schmidt, "Support vector random fields for spatial classification," in Proc. PKDD, 2005, pp. 121-132.
    • (2005) Proc. PKDD , pp. 121-132
    • Lee, C.H.1    Greiner, R.2    Schmidt, M.3
  • 24
  • 25
    • 0034850577 scopus 로고    scopus 로고
    • A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics
    • Jul.
    • D. Martin, C. Fowlkes, D. Tal, and J. Malik, "A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics," in Proc. Int. Conf. Comput. Vision, Jul. 2001, pp. 416-423.
    • (2001) Proc. Int. Conf. Comput. Vision , pp. 416-423
    • Martin, D.1    Fowlkes, C.2    Tal, D.3    Malik, J.4
  • 28
    • 33746813525 scopus 로고    scopus 로고
    • Variational learning for Gaussian mixture models
    • Aug.
    • N. Nasios and A. G. Bors, "Variational learning for Gaussian mixture models," IEEE Trans. Syst. Man Cybern. B Cybern., vol.36, no.4, pp. 849-862, Aug. 2006.
    • (2006) IEEE Trans. Syst. Man Cybern. B Cybern , vol.36 , Issue.4 , pp. 849-862
    • Nasios, N.1    Bors, A.G.2
  • 29
    • 0742322229 scopus 로고    scopus 로고
    • Hierarchical Markovian segmentation of multispectral images for the reconstruction of water depth maps
    • J. N. Provost, R. C. Collet, P. Perez, and P. Bouthemy, "Hierarchical Markovian segmentation of multispectral images for the reconstruction of water depth maps," Comput. Vision Image Understanding, vol.93, no.2, pp. 155-174, 2004.
    • (2004) Comput. Vision Image Understanding , vol.93 , Issue.2 , pp. 155-174
    • Provost, J.N.1    Collet, R.C.2    Perez, P.3    Bouthemy, P.4
  • 31
    • 0021404166 scopus 로고
    • Mixture densities, maximum likelihood and the em algorithm
    • R. A. Redner and H. F. Walker, "Mixture densities, maximum likelihood and the EM algorithm," SIAM Rev., vol.26, no.2, pp. 195-239, 1984.
    • (1984) SIAM Rev , vol.26 , Issue.2 , pp. 195-239
    • Redner, R.A.1    Walker, H.F.2
  • 32
    • 1242286396 scopus 로고    scopus 로고
    • A temporally adaptive classifier for multispectral imagery
    • Jan.
    • M. Robinson, M. Azimi-Sadjadi, and J. Salazar, "A temporally adaptive classifier for multispectral imagery," IEEE Trans. Neural Netw., vol.15, no.1, pp. 159-165, Jan. 2004.
    • (2004) IEEE Trans. Neural Netw , vol.15 , Issue.1 , pp. 159-165
    • Robinson, M.1    Azimi-Sadjadi, M.2    Salazar, J.3
  • 34
    • 0004116414 scopus 로고
    • 3rd ed. New York: McGraw-Hill
    • W. Rudin, Real and Complex Analysis, 3rd ed. New York: McGraw-Hill, 1987, pp. 62-65.
    • (1987) Real and Complex Analysis , pp. 62-65
    • Rudin, W.1
  • 35
    • 0032122746 scopus 로고    scopus 로고
    • Bayesian pixel classification using spatially variant finite mixtures and the generalized em algorithm
    • Jul.
    • G. S. Sanjay and T. J. Hebert, "Bayesian pixel classification using spatially variant finite mixtures and the generalized EM algorithm," IEEE Trans. Image Process., vol.7, no.7, pp. 1014-1028, Jul. 1998.
    • (1998) IEEE Trans. Image Process , vol.7 , Issue.7 , pp. 1014-1028
    • Sanjay, G.S.1    Hebert, T.J.2
  • 36
    • 0027659237 scopus 로고
    • Quantification of MR brain images by mixture density and partial volume modeling
    • Sep.
    • P. Santago and H. D. Gage, "Quantification of MR brain images by mixture density and partial volume modeling," IEEE Trans. Med. Imaging, vol.12, no.3, pp. 566-574, Sep. 1993.
    • (1993) IEEE Trans. Med. Imaging , vol.12 , Issue.3 , pp. 566-574
    • Santago, P.1    Gage, H.D.2
  • 37
    • 0029404688 scopus 로고
    • Statistical models of partial volume effect
    • Nov.
    • P. Santago and H. D. Gage, "Statistical models of partial volume effect," IEEE Trans. Image Process., vol.4, no.11, pp. 1531-1540, Nov. 1995.
    • (1995) IEEE Trans. Image Process , vol.4 , Issue.11 , pp. 1531-1540
    • Santago, P.1    Gage, H.D.2
  • 39
    • 69949160723 scopus 로고    scopus 로고
    • Maximum likelihood neural network based on the correlation among neighboring pixels for noisy image segmentation
    • Oct.
    • M. N. Thanh and Q. M. J. Wu, "Maximum likelihood neural network based on the correlation among neighboring pixels for noisy image segmentation," in Proc. IEEE Int. Conf. Image Process., Oct. 2008, pp. 3020-3023.
    • (2008) Proc. IEEE Int. Conf. Image Process. , pp. 3020-3023
    • Thanh, M.N.1    Wu, Q.M.J.2
  • 42
    • 0026938712 scopus 로고
    • The mean field theory in em procedures for Markov random fields
    • Oct.
    • J. Zhang, "The mean field theory in EM procedures for Markov random fields," IEEE Trans. Signal Process., vol.40, no.10, pp. 2570-2583, Oct. 1992.
    • (1992) IEEE Trans. Signal Process , vol.40 , Issue.10 , pp. 2570-2583
    • Zhang, J.1
  • 43
    • 0034745001 scopus 로고    scopus 로고
    • Segmentation of brain MR images through a hidden Markov random field model and the expectationmaximization algorithm
    • Jan.
    • Y. Zhang, M. Brady, and S. Smith, "Segmentation of brain MR images through a hidden Markov random field model and the expectationmaximization algorithm," IEEE Trans. Med. Imaging, vol.20, no.1, pp. 45-57, Jan. 2001.
    • (2001) IEEE Trans. Med. Imaging , vol.20 , Issue.1 , pp. 45-57
    • Zhang, Y.1    Brady, M.2    Smith, S.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.