메뉴 건너뛰기




Volumn 16, Issue 5, 2008, Pages 1351-1361

A fuzzy clustering approach toward Hidden Markov random field models for enhanced spatially constrained image segmentation

Author keywords

Fuzzy clustering; Hidden Markov models; Image segmentation; Mean field approximation

Indexed keywords

APPLICATIONS; DIGITAL IMAGE STORAGE; FLOW OF SOLIDS; FUZZY RULES; FUZZY SETS; FUZZY SYSTEMS; HIDDEN MARKOV MODELS; IMAGE PROCESSING; IMAGE SEGMENTATION; MARKOV PROCESSES; POLYNOMIAL APPROXIMATION; SPEECH RECOGNITION;

EID: 54349092861     PISSN: 10636706     EISSN: None     Source Type: Journal    
DOI: 10.1109/TFUZZ.2008.2005008     Document Type: Article
Times cited : (220)

References (43)
  • 1
    • 0003455701 scopus 로고    scopus 로고
    • Image Analysis, Random Fields, and Markov Chain Monte Carlo Methods
    • 2nd ed, Berlin, Germany: Springer-Verlag
    • G. Winkler, Image Analysis, Random Fields, and Markov Chain Monte Carlo Methods, 2nd ed. (Stochastic Modeling and Applied Probability Series). Berlin, Germany: Springer-Verlag, 2006.
    • (2006) Stochastic Modeling and Applied Probability Series
    • Winkler, G.1
  • 2
    • 38249019636 scopus 로고
    • Parameters estimation for hidden Gibbs chains
    • W. Qian and D. Titterington, "Parameters estimation for hidden Gibbs chains," Stat. Probab. Lett., vol. 10, pp. 49-58, 1990.
    • (1990) Stat. Probab. Lett , vol.10 , pp. 49-58
    • Qian, W.1    Titterington, D.2
  • 3
    • 0000013152 scopus 로고
    • On the statistical analysis of dirty pictures
    • J. Besag, "On the statistical analysis of dirty pictures," J. Roy. Stat. Soc. B, vol. 48, pp. 259-302, 1986.
    • (1986) J. Roy. Stat. Soc. B , vol.48 , pp. 259-302
    • Besag, J.1
  • 4
    • 0021518209 scopus 로고
    • Stochastic relaxation, Gibbs distributions and the Bayesian restoration of images
    • Nov
    • S. Geman and D. Geman, "Stochastic relaxation, Gibbs distributions and the Bayesian restoration of images," IEEE Trans. Pattern Anal. Mach. Intell., vol. PAMI-6, no. 6, pp. 721-741, Nov. 1984.
    • (1984) IEEE Trans. Pattern Anal. Mach. Intell , vol.PAMI-6 , Issue.6 , pp. 721-741
    • Geman, S.1    Geman, D.2
  • 5
    • 0000582521 scopus 로고
    • Statistical analysis of nonlattice data
    • J. Besag, "Statistical analysis of nonlattice data," Statistician vol. 24, pp. 179-195, 1975.
    • (1975) Statistician , vol.24 , pp. 179-195
    • Besag, J.1
  • 6
    • 0000690597 scopus 로고
    • Estimation of parameters in hidden Markov models
    • W. Qian and D. Titterington, "Estimation of parameters in hidden Markov models," Philos. Trans. Roy. Soc. London A, vol. 337, pp. 407-428, 1991.
    • (1991) Philos. Trans. Roy. Soc. London A , vol.337 , pp. 407-428
    • Qian, W.1    Titterington, D.2
  • 7
    • 0012163326 scopus 로고
    • A simulation study of some contextual classification methods for remotely sensed data
    • Nov
    • N. Hjort, E. Mohn, and G. Storvik, "A simulation study of some contextual classification methods for remotely sensed data," IEEE Trans. Geosci. Electron., vol. GE-25, no. 6, pp. 796-804, Nov. 1987.
    • (1987) IEEE Trans. Geosci. Electron , vol.GE-25 , Issue.6 , pp. 796-804
    • Hjort, N.1    Mohn, E.2    Storvik, G.3
  • 8
  • 9
    • 0037209490 scopus 로고    scopus 로고
    • EM procedures using mean field-like approximations for Markov model-based image segmentation
    • G. Celeux, F. Forbes, and N. Peyrard, "EM procedures using mean field-like approximations for Markov model-based image segmentation," Pattern Recognit., vol. 36, no. 1, pp. 131-144, 2003.
    • (2003) Pattern Recognit , vol.36 , Issue.1 , pp. 131-144
    • Celeux, G.1    Forbes, F.2    Peyrard, N.3
  • 10
    • 34248666540 scopus 로고
    • Fuzzy sets
    • L. Zadeh, "Fuzzy sets," Inf. Control, vol. 8, pp. 338-353, 1965.
    • (1965) Inf. Control , vol.8 , pp. 338-353
    • Zadeh, L.1
  • 13
    • 3543098627 scopus 로고    scopus 로고
    • Robust image segmentation using FCM with spatial constraints based on new Kernel-induced distance measure
    • Aug
    • S. Chen and D. Zhang, "Robust image segmentation using FCM with spatial constraints based on new Kernel-induced distance measure," IEEE Trans. Syst., Man, Cybern. B, Cybern., vol. 34, no. 4, pp. 1907-1916, Aug. 2004.
    • (2004) IEEE Trans. Syst., Man, Cybern. B, Cybern , vol.34 , Issue.4 , pp. 1907-1916
    • Chen, S.1    Zhang, D.2
  • 14
    • 0032843554 scopus 로고    scopus 로고
    • An adaptive fuzzy c-means algorithm for image segmentation in the presence of intensity inhomogeneities
    • D. Pham and J. L. Prince, "An adaptive fuzzy c-means algorithm for image segmentation in the presence of intensity inhomogeneities," Pattern Recognit. Lett., vol. 20, pp. 57-68, 1999.
    • (1999) Pattern Recognit. Lett , vol.20 , pp. 57-68
    • Pham, D.1    Prince, J.L.2
  • 15
    • 0037534035 scopus 로고    scopus 로고
    • Toward a robust fuzzy clustering
    • J. Leski, "Toward a robust fuzzy clustering," Fuzzy Sets Syst., vol. 137, no. 2, pp. 215-233, 2003.
    • (2003) Fuzzy Sets Syst , vol.137 , Issue.2 , pp. 215-233
    • Leski, J.1
  • 17
    • 0038141462 scopus 로고    scopus 로고
    • An ε-insensitive approach to fuzzy clustering
    • J. Leski, "An ε-insensitive approach to fuzzy clustering," Int. J. Appl. Math. Comput. Sci., vol. 11, no. 4, pp. 993-1007, 2001.
    • (2001) Int. J. Appl. Math. Comput. Sci , vol.11 , Issue.4 , pp. 993-1007
    • Leski, J.1
  • 18
    • 67149143365 scopus 로고    scopus 로고
    • Factor analysis latent subspace modeling and robust fuzzy clustering using t distributions
    • to be published
    • S. Chatzis and T. Varvarigou, "Factor analysis latent subspace modeling and robust fuzzy clustering using t distributions," IEEE Trans. Fuzzy Syst., to be published.
    • IEEE Trans. Fuzzy Syst
    • Chatzis, S.1    Varvarigou, T.2
  • 19
    • 26844532803 scopus 로고    scopus 로고
    • A possibilistic fuzzy c-means clustering algorithm
    • Aug
    • N. R. Pal, K. Pal, J. M. Keller, and J. Bezdek, "A possibilistic fuzzy c-means clustering algorithm," IEEE Trans. Fuzzy Syst., vol. 13, no. 4, pp. 517-530, Aug. 2005.
    • (2005) IEEE Trans. Fuzzy Syst , vol.13 , Issue.4 , pp. 517-530
    • Pal, N.R.1    Pal, K.2    Keller, J.M.3    Bezdek, J.4
  • 20
    • 33747602096 scopus 로고    scopus 로고
    • Soft transition from probabilistic to possibilistic fuzzy clustering
    • Aug
    • F. Masulli and S. Rovetta, "Soft transition from probabilistic to possibilistic fuzzy clustering," IEEE Trans. Fuzzy Syst., vol. 14, no. 4, pp. 516-527, Aug. 2006.
    • (2006) IEEE Trans. Fuzzy Syst , vol.14 , Issue.4 , pp. 516-527
    • Masulli, F.1    Rovetta, S.2
  • 21
    • 35348845206 scopus 로고    scopus 로고
    • A generalized fuzzy clustering regularization model with optimality tests and model complexity analysis
    • Oct
    • J. Yu and M. S. Yang, "A generalized fuzzy clustering regularization model with optimality tests and model complexity analysis," IEEE Trans. Fuzzy Syst., vol. 15, no. 5, pp. 904-915, Oct. 2007.
    • (2007) IEEE Trans. Fuzzy Syst , vol.15 , Issue.5 , pp. 904-915
    • Yu, J.1    Yang, M.S.2
  • 22
    • 40549134223 scopus 로고    scopus 로고
    • A new fuzzy set merging technique using inclusion-based fuzzy clustering
    • Feb
    • S. Nefti, M. Oussalah, and U. Kaymak, "A new fuzzy set merging technique using inclusion-based fuzzy clustering," IEEE Trans. Fuzzy Syst., vol. 16, no. 1, pp. 145-161, Feb. 2008.
    • (2008) IEEE Trans. Fuzzy Syst , vol.16 , Issue.1 , pp. 145-161
    • Nefti, S.1    Oussalah, M.2    Kaymak, U.3
  • 23
    • 0036489378 scopus 로고    scopus 로고
    • A modified fuzzy c-means algorithm for bias field estimation and segmentation of MRI data
    • Mar
    • M. N. Ahmed, S. M. Yamany, N. Mohamed, A. A. Farag, and T. Moriarty, "A modified fuzzy c-means algorithm for bias field estimation and segmentation of MRI data," IEEE Trans. Med. Imag., vol. 21, no. 3, pp. 193-199, Mar. 2002.
    • (2002) IEEE Trans. Med. Imag , vol.21 , Issue.3 , pp. 193-199
    • Ahmed, M.N.1    Yamany, S.M.2    Mohamed, N.3    Farag, A.A.4    Moriarty, T.5
  • 24
    • 0032070619 scopus 로고    scopus 로고
    • Image segmentation by a fuzzy clustering algorithm using adaptive spatially constrained membership functions
    • May
    • Y. A. Tolias and S. M. Panas, "Image segmentation by a fuzzy clustering algorithm using adaptive spatially constrained membership functions," IEEE Trans. Syst., Man, Cybern. A, Syst. Humans, vol. 28, no. 3, pp. 359-369, May 1998.
    • (1998) IEEE Trans. Syst., Man, Cybern. A, Syst. Humans , vol.28 , Issue.3 , pp. 359-369
    • Tolias, Y.A.1    Panas, S.M.2
  • 25
    • 0036447890 scopus 로고    scopus 로고
    • Fuzzy clustering with spatial constraints
    • D. L. Pham, "Fuzzy clustering with spatial constraints," in Proc. IEEE Int. Conf. Image Process., 2002, vol. 2, pp. 65-68.
    • (2002) Proc. IEEE Int. Conf. Image Process , vol.2 , pp. 65-68
    • Pham, D.L.1
  • 26
    • 26844546953 scopus 로고    scopus 로고
    • Image segmentation based on adaptive cluster prototype estimation
    • Aug
    • A.-C. Liew, H. Yan, and N. F. Law, "Image segmentation based on adaptive cluster prototype estimation," IEEE Trans. Fuzzy Syst., vol. 13, no. 4, pp. 444-453, Aug. 2005.
    • (2005) IEEE Trans. Fuzzy Syst , vol.13 , Issue.4 , pp. 444-453
    • Liew, A.-C.1    Yan, H.2    Law, N.F.3
  • 27
    • 84950881632 scopus 로고
    • Probabilistic solution of ill-posed problems in computational vision
    • J. Maroquin, S. Mitte, and T. Poggio, "Probabilistic solution of ill-posed problems in computational vision," J. Amer. Stat. Assoc. vol. 82, pp. 76-89, 1987.
    • (1987) J. Amer. Stat. Assoc , vol.82 , pp. 76-89
    • Maroquin, J.1    Mitte, S.2    Poggio, T.3
  • 30
    • 0034745001 scopus 로고    scopus 로고
    • Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm
    • Jan
    • Y. Zhang, M. Brady, and S. Smith, "Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm," IEEE Trans. Med. Imag., vol. 20, no. 1, pp. 45-57, Jan. 2001.
    • (2001) IEEE Trans. Med. Imag , vol.20 , Issue.1 , pp. 45-57
    • Zhang, Y.1    Brady, M.2    Smith, S.3
  • 31
    • 0002199090 scopus 로고
    • Markov random field image models and their applications to computer vision
    • Providence, RI: Amer. Math. Soc
    • S. Geman and C. Graffigne, "Markov random field image models and their applications to computer vision," in Proc. Int. Conf. Math. Providence, RI: Amer. Math. Soc., 1987, pp. 1498-1517.
    • (1987) Proc. Int. Conf. Math , pp. 1498-1517
    • Geman, S.1    Graffigne, C.2
  • 32
    • 0024855884 scopus 로고
    • An iterative Gibbsian technique for reconstruction of m-ary images
    • B. Chalmond, "An iterative Gibbsian technique for reconstruction of m-ary images," Pattern Recognit., vol. 22, no. 6, pp. 747-761, 1989.
    • (1989) Pattern Recognit , vol.22 , Issue.6 , pp. 747-761
    • Chalmond, B.1
  • 33
    • 0027308049 scopus 로고
    • The mean field theory in EM procedures for Markov random fields
    • Jan
    • J. Zhang, "The mean field theory in EM procedures for Markov random fields," IEEE Trans. Image Process., vol. 2, no. 1, pp. 27-40, Jan. 1993.
    • (1993) IEEE Trans. Image Process , vol.2 , Issue.1 , pp. 27-40
    • Zhang, J.1
  • 35
    • 0141613707 scopus 로고    scopus 로고
    • Hidden Markov random field model selection criteria based on mean field-like approximations
    • Sep
    • F. Forbes and N. Peyrard, "Hidden Markov random field model selection criteria based on mean field-like approximations," IEEE Trans. Pattern Anal. Mach. Intell., vol. 25, no. 9, pp. 1089-1101, Sep. 2003.
    • (2003) IEEE Trans. Pattern Anal. Mach. Intell , vol.25 , Issue.9 , pp. 1089-1101
    • Forbes, F.1    Peyrard, N.2
  • 38
    • 0014534297 scopus 로고
    • A new approach to clustering
    • E. Ruspini, "A new approach to clustering," Inf. Control, vol. 15, pp. 22-32, 1969.
    • (1969) Inf. Control , vol.15 , pp. 22-32
    • Ruspini, E.1
  • 39
    • 34047208285 scopus 로고    scopus 로고
    • A class-adaptive spatially variant mixture model for image segmentation
    • Apr
    • C. Nikou, N. Galatsanos, and A. Likas, "A class-adaptive spatially variant mixture model for image segmentation," IEEE Trans. Image Process., vol. 16, no. 4, pp. 1121-1130, Apr. 2007.
    • (2007) IEEE Trans. Image Process , vol.16 , Issue.4 , pp. 1121-1130
    • Nikou, C.1    Galatsanos, N.2    Likas, A.3
  • 40
    • 0011813234 scopus 로고    scopus 로고
    • Fast automatic unsupervised image segmentation and curve detection in spatial point pattern,
    • Ph.D. dissertation, Dept. Stat, Univ. Washington, Seattle
    • D. C. Stanford, "Fast automatic unsupervised image segmentation and curve detection in spatial point pattern," Ph.D. dissertation, Dept. Stat., Univ. Washington, Seattle, 1999.
    • (1999)
    • Stanford, D.C.1
  • 41
    • 0034850577 scopus 로고    scopus 로고
    • A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics
    • Vancouver, BC, Canada
    • D. Martin, C. Fowlkes, D. Tal, and J. Malik, "A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics," in Proc. 8th IEEE Int. Conf. Comput. Vis., Vancouver, BC, Canada, 2001, vol. 2, pp. 416-423.
    • (2001) Proc. 8th IEEE Int. Conf. Comput. Vis , vol.2 , pp. 416-423
    • Martin, D.1    Fowlkes, C.2    Tal, D.3    Malik, J.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.