-
2
-
-
27144452065
-
-
10.1109/LED.2005.855420
-
C. C. Yeo, B. J. Cho, F. Gao, S. J. Lee, M. H. Lee, C. Y. Yu, C. W. Liu, L. J. Tang, and T. W. Lee, IEEE Electron Device Lett. 26, 761 (2005). 10.1109/LED.2005.855420
-
(2005)
IEEE Electron Device Lett.
, vol.26
, pp. 761
-
-
Yeo, C.C.1
Cho, B.J.2
Gao, F.3
Lee, S.J.4
Lee, M.H.5
Yu, C.Y.6
Liu, C.W.7
Tang, L.J.8
Lee, T.W.9
-
3
-
-
34548511986
-
-
10.1063/1.2779845
-
Y. J. Yang, W. S. Ho, C. F. Huang, S. T. Chang, and C. W. Liu, Appl. Phys. Lett. 91, 102103 (2007). 10.1063/1.2779845
-
(2007)
Appl. Phys. Lett.
, vol.91
, pp. 102103
-
-
Yang, Y.J.1
Ho, W.S.2
Huang, C.F.3
Chang, S.T.4
Liu, C.W.5
-
5
-
-
0031559781
-
-
10.1103/PhysRevLett.79.1937
-
G. He and H. A. Atwater, Phys. Rev. Lett. 79, 1937 (1997). 10.1103/PhysRevLett.79.1937
-
(1997)
Phys. Rev. Lett.
, vol.79
, pp. 1937
-
-
He, G.1
Atwater, H.A.2
-
6
-
-
33846411826
-
-
10.1103/PhysRevB.75.045208
-
J. D. Sau and M. L. Cohen, Phys. Rev. B 75, 045208 (2007). 10.1103/PhysRevB.75.045208
-
(2007)
Phys. Rev. B
, vol.75
, pp. 045208
-
-
Sau, J.D.1
Cohen, M.L.2
-
9
-
-
34247887648
-
-
and the ISOLDE Collaboration 10.1063/1.2736279
-
I. Riihimäki, A. Virtanen, H. Kettunen, P. Pusa, P. Laitinen, J. Räisänen, and the ISOLDE Collaboration, Appl. Phys. Lett. 90, 181922 (2007). 10.1063/1.2736279
-
(2007)
Appl. Phys. Lett.
, vol.90
, pp. 181922
-
-
Riihimäki, I.1
Virtanen, A.2
Kettunen, H.3
Pusa, P.4
Laitinen, P.5
Räisänen, J.6
-
10
-
-
34548421523
-
-
and the ISOLDE Collaboration 10.1063/1.2778540
-
I. Riihimäki, A. Virtanen, S. Rinta-Anttila, P. Pusa, J. Räisänen, and the ISOLDE Collaboration, Appl. Phys. Lett. 91, 091922 (2007). 10.1063/1.2778540
-
(2007)
Appl. Phys. Lett.
, vol.91
, pp. 091922
-
-
Riihimäki, I.1
Virtanen, A.2
Rinta-Anttila, S.3
Pusa, P.4
Räisänen, J.5
-
11
-
-
0035823821
-
-
10.1021/ja0115058
-
J. Taraci, S. Zollner, M. R. McCartney, J. Menendez, M. A. Santana-Aranda, D. J. Smith, A. Haaland, A. V. Tutukin, G. Gundersen, G. Wolf, and J. Kouvetakis, J. Am. Chem. Soc. 123, 10980 (2001). 10.1021/ja0115058
-
(2001)
J. Am. Chem. Soc.
, vol.123
, pp. 10980
-
-
Taraci, J.1
Zollner, S.2
McCartney, M.R.3
Menendez, J.4
Santana-Aranda, M.A.5
Smith, D.J.6
Haaland, A.7
Tutukin, A.V.8
Gundersen, G.9
Wolf, G.10
Kouvetakis, J.11
-
12
-
-
1542426501
-
-
10.1007/BF01022445
-
G. Weyer, A. Nylandsted-Larsen, B. I. Deutch, J. U. Andersen, and E. Antoncik, Hyperfine Interact. 1, 93 (1975). 10.1007/BF01022445
-
(1975)
Hyperfine Interact.
, vol.1
, pp. 93
-
-
Weyer, G.1
Nylandsted-Larsen, A.2
Deutch, B.I.3
Andersen, J.U.4
Antoncik, E.5
-
13
-
-
0343042226
-
-
10.1016/0375-9601(80)90506-X
-
G. Weyer, S. Damgaard, J. W. Petersen, and J. Heinemeier, Phys. Lett. 76A, 321 (1980). 10.1016/0375-9601(80)90506-X
-
(1980)
Phys. Lett.
, vol.76
, pp. 321
-
-
Weyer, G.1
Damgaard, S.2
Petersen, J.W.3
Heinemeier, J.4
-
15
-
-
84957145923
-
-
10.1088/0031-8949/22/6/016
-
S. Damgaard, A. F. F. Olesen, J. W. Petersen, and G. Weyer, Phys. Scr. 22, 640 (1981). 10.1088/0031-8949/22/6/016
-
(1981)
Phys. Scr.
, vol.22
, pp. 640
-
-
Damgaard, S.1
Olesen, A.F.F.2
Petersen, J.W.3
Weyer, G.4
-
16
-
-
15444376077
-
-
10.1103/PhysRevB.71.035212
-
H. Höhler, N. Atodiresei, K. Schroeder, R. Zeller, and P. H. Dederichs, Phys. Rev. B 71, 035212 (2005). 10.1103/PhysRevB.71.035212
-
(2005)
Phys. Rev. B
, vol.71
, pp. 035212
-
-
Höhler, H.1
Atodiresei, N.2
Schroeder, K.3
Zeller, R.4
Dederichs, P.H.5
-
17
-
-
33745481239
-
-
10.1103/PhysRevB.73.235213
-
J. Coutinho, S. Öberg, V. J. B. Torres, M. Barroso, R. Jones, and P. R. Briddon, Phys. Rev. B 73, 235213 (2006). 10.1103/PhysRevB.73.235213
-
(2006)
Phys. Rev. B
, vol.73
, pp. 235213
-
-
Coutinho, J.1
Öberg, S.2
Torres, V.J.B.3
Barroso, M.4
Jones, R.5
Briddon, P.R.6
-
18
-
-
0001349487
-
-
10.1103/PhysRevB.12.4383
-
G. D. Watkins, Phys. Rev. B 12, 4383 (1975). 10.1103/PhysRevB.12.4383
-
(1975)
Phys. Rev. B
, vol.12
, pp. 4383
-
-
Watkins, G.D.1
-
20
-
-
53649106563
-
-
10.1063/1.2996280
-
S. Decoster, B. De Vries, U. Wahl, J. G. Correia, and A. Vantomme, Appl. Phys. Lett. 93, 141907 (2008). 10.1063/1.2996280
-
(2008)
Appl. Phys. Lett.
, vol.93
, pp. 141907
-
-
Decoster, S.1
De Vries, B.2
Wahl, U.3
Correia, J.G.4
Vantomme, A.5
-
21
-
-
61349142522
-
-
10.1103/PhysRevLett.102.065502
-
S. Decoster, S. Cottenier, B. De Vries, H. Emmerich, U. Wahl, J. G. Correia, and A. Vantomme, Phys. Rev. Lett. 102, 065502 (2009). 10.1103/PhysRevLett.102.065502
-
(2009)
Phys. Rev. Lett.
, vol.102
, pp. 065502
-
-
Decoster, S.1
Cottenier, S.2
De Vries, B.3
Emmerich, H.4
Wahl, U.5
Correia, J.G.6
Vantomme, A.7
-
22
-
-
65549100917
-
-
10.1063/1.3110104
-
S. Decoster, B. De Vries, U. Wahl, J. G. Correia, and A. Vantomme, J. Appl. Phys. 105, 083522 (2009). 10.1063/1.3110104
-
(2009)
J. Appl. Phys.
, vol.105
, pp. 083522
-
-
Decoster, S.1
De Vries, B.2
Wahl, U.3
Correia, J.G.4
Vantomme, A.5
-
23
-
-
2342548754
-
-
and the ISOLDE Collaboration, 10.1016/j.nima.2003.12.044
-
U. Wahl, J. G. Correia, A. Czermak, S. G. Jahn, P. Jalocha, J. G. Marques, A. Rudge, F. Schopper, J. C. Soares, A. Vantomme, P. Weilhammer, and the ISOLDE Collaboration, Nucl. Instrum. Methods Phys. Res. A 524, 245 (2004). 10.1016/j.nima.2003.12.044
-
(2004)
Nucl. Instrum. Methods Phys. Res. A
, vol.524
, pp. 245
-
-
Wahl, U.1
Correia, J.G.2
Czermak, A.3
Jahn, S.G.4
Jalocha, P.5
Marques, J.G.6
Rudge, A.7
Schopper, F.8
Soares, J.C.9
Vantomme, A.10
Weilhammer, P.11
-
24
-
-
13844314686
-
-
10.1016/0370-1573(91)90121-2
-
H. Hofsäss and G. Lindner, Phys. Rep. 201, 121 (1991). 10.1016/0370-1573(91)90121-2
-
(1991)
Phys. Rep.
, vol.201
, pp. 121
-
-
Hofsäss, H.1
Lindner, G.2
-
25
-
-
0033356094
-
-
and the ISOLDE Collaboration, 10.1016/S0921-4526(99)00479-2
-
U. Wahl, J. G. Correia, A. Vantomme, G. Langouche, and the ISOLDE Collaboration, Physica B 273-274, 367 (1999). 10.1016/S0921-4526(99)00479-2
-
(1999)
Physica B
, vol.273-274
, pp. 367
-
-
Wahl, U.1
Correia, J.G.2
Vantomme, A.3
Langouche, G.4
-
27
-
-
10644250257
-
-
10.1103/PhysRev.136.B864
-
P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964). 10.1103/PhysRev.136.B864
-
(1964)
Phys. Rev.
, vol.136
, pp. 864
-
-
Hohenberg, P.1
Kohn, W.2
-
29
-
-
0003417617
-
-
Karlheinz Schwarz, TU Wien, Wien
-
P. Blaha, K. Schwarz, G. Madsen, D. Kvasnicka, and J. Luitz, Wien2k: An Augmented Plane Wave plus Local Orbitals program for calculating crystal properties (Karlheinz Schwarz, TU Wien, Wien, 2001).
-
(2001)
Wien2k: An Augmented Plane Wave Plus Local Orbitals Program for Calculating Crystal Properties
-
-
Blaha, P.1
Schwarz, K.2
Madsen, G.3
Kvasnicka, D.4
Luitz, J.5
-
32
-
-
0000377728
-
-
10.1103/PhysRevB.55.12572
-
A. Svane, N. E. Christensen, C. O. Rodriguez, and M. Methfessel, Phys. Rev. B 55, 12572 (1997). 10.1103/PhysRevB.55.12572
-
(1997)
Phys. Rev. B
, vol.55
, pp. 12572
-
-
Svane, A.1
Christensen, N.E.2
Rodriguez, C.O.3
Methfessel, M.4
-
33
-
-
0001665140
-
-
10.1103/PhysRevB.60.4576
-
P. E. Lippens, Phys. Rev. B 60, 4576 (1999). 10.1103/PhysRevB.60.4576
-
(1999)
Phys. Rev. B
, vol.60
, pp. 4576
-
-
Lippens, P.E.1
-
35
-
-
77955409119
-
-
Due to the relatively small quadrupole moment (0.132 b) of S 119 n, a small electric field gradient results in an unresolved doublet in MS measurements, i.e., a line which is only slightly broader than the natural linewidth. This makes an accurate experimental determination of the quadrupole splitting very difficult, which might be the reason for the relatively large difference between the calculated and the experimentally observed quadrupole splitting. However, since the experimental value of the isomer shift, which can be determined much more accurately, is very close to the calculated value, we can still conclude that the experimental and calculated hyperfine parameters of SnBC in the split-vacancy configuration are in good agreement
-
Due to the relatively small quadrupole moment (0.132 b) of S 119 n, a small electric field gradient results in an unresolved doublet in MS measurements, i.e., a line which is only slightly broader than the natural linewidth. This makes an accurate experimental determination of the quadrupole splitting very difficult, which might be the reason for the relatively large difference between the calculated and the experimentally observed quadrupole splitting. However, since the experimental value of the isomer shift, which can be determined much more accurately, is very close to the calculated value, we can still conclude that the experimental and calculated hyperfine parameters of Sn BC in the split-vacancy configuration are in good agreement.
-
-
-
|