메뉴 건너뛰기




Volumn 13, Issue 2, 2009, Pages 385-401

An overview of advances in reliability estimation of individual predictions in machine learning

Author keywords

Data perturbation; Prediction accuracy; Predictions; Reliability; Supervised learning; Unlabeled examples

Indexed keywords


EID: 62449194481     PISSN: 1088467X     EISSN: 15714128     Source Type: Journal    
DOI: 10.3233/IDA-2009-0371     Document Type: Review
Times cited : (62)

References (69)
  • 2
    • 84898963451 scopus 로고    scopus 로고
    • Probabilistic modeling for face orientation discrimination: Learning from labeled and unlabeled data
    • M.J. Kearns, ed, The MIT Press
    • S. Baluja, Probabilistic modeling for face orientation discrimination: Learning from labeled and unlabeled data, in: Proceedings of the 1998 conference on Advances in neural information processing systems II, M.J. Kearns, ed., The MIT Press, 1998, pp. 854-860.
    • (1998) Proceedings of the 1998 conference on Advances in neural information processing systems II , pp. 854-860
    • Baluja, S.1
  • 5
    • 54249164497 scopus 로고    scopus 로고
    • Estimation of individual prediction reliability using the local sensitivity analysis
    • Z. Bosnić and I. Kononenko, Estimation of individual prediction reliability using the local sensitivity analysis, Applied Intelligence 29(3) (2007), 187-203.
    • (2007) Applied Intelligence , vol.29 , Issue.3 , pp. 187-203
    • Bosnić, Z.1    Kononenko, I.2
  • 7
    • 70350059130 scopus 로고    scopus 로고
    • Automatic Selection of Reliability Estimates for Individual Regression Predictions Using Meta-Learning and Internal Cross-Validation
    • in press
    • Z. Bosnić and I. Kononenko, Automatic Selection of Reliability Estimates for Individual Regression Predictions Using Meta-Learning and Internal Cross-Validation, Knowledge Engineering Review (2008), in press.
    • (2008) Knowledge Engineering Review
    • Bosnić, Z.1    Kononenko, I.2
  • 8
    • 54349094489 scopus 로고    scopus 로고
    • Comparison of approaches for estimating reliability of individual regression predictions
    • Z. Bosnić and I. Kononenko, Comparison of approaches for estimating reliability of individual regression predictions, Data & Knowledge Engineering 67(3) (2008), 504-516.
    • (2008) Data & Knowledge Engineering , vol.67 , Issue.3 , pp. 504-516
    • Bosnić, Z.1    Kononenko, I.2
  • 9
    • 62249148128 scopus 로고    scopus 로고
    • Evaluation of prediction reliability in regression using the transduction principle
    • B. Zajc and M. Tkalčič, eds
    • Z. Bosnić, I. Kononenko, M. Robnik-Šikonja and M. Kukar, Evaluation of prediction reliability in regression using the transduction principle, in: Proceedings of Eurocon 2003, B. Zajc and M. Tkalčič, eds, 2003, pp. 99-103.
    • (2003) Proceedings of Eurocon 2003 , pp. 99-103
    • Bosnić, Z.1    Kononenko, I.2    Robnik-Šikonja, M.3    Kukar, M.4
  • 12
  • 14
    • 0030211964 scopus 로고    scopus 로고
    • Bagging Predictors
    • L. Breiman, Bagging Predictors, Machine Learning 24 (1996), 123-140.
    • (1996) Machine Learning , vol.24 , pp. 123-140
    • Breiman, L.1
  • 15
    • 0007325881 scopus 로고    scopus 로고
    • Pasting bites together for prediction in large data sets and on-line
    • Technical Report, University of California
    • L. Breiman, Pasting bites together for prediction in large data sets and on-line, Technical Report, University of California, 1997.
    • (1997)
    • Breiman, L.1
  • 21
    • 0005986550 scopus 로고
    • Learning Classification with Unlabeled Data
    • J.D. Cowan, ed, Morgan Kaufmann Publishers, San Francisco, CA
    • V. de Sa, Learning Classification with Unlabeled Data, in: Proceedings of Neural Information Processing Systems, J.D. Cowan, ed., , Morgan Kaufmann Publishers, San Francisco, CA, 1993, pp. 112-119.
    • (1993) Proceedings of Neural Information Processing Systems , pp. 112-119
    • de Sa, V.1
  • 23
    • 65449167709 scopus 로고    scopus 로고
    • Cluster Quality Indexes for Symbolic Classification ?An Examination
    • Springer Berlin Heidelberg
    • A. Dudek, Cluster Quality Indexes for Symbolic Classification ?An Examination, in: Advances in Data Analysis, Springer Berlin Heidelberg, 2007, pp. 31-38.
    • (2007) Advances in Data Analysis , pp. 31-38
    • Dudek, A.1
  • 25
    • 0031211090 scopus 로고    scopus 로고
    • A decision-theoretic generalization of on-line learning and an application to boosting
    • Y. Freund and R. Schapire, A decision-theoretic generalization of on-line learning and an application to boosting, Journal of Computer and System Sciences 55(1) (1997), 119-139.
    • (1997) Journal of Computer and System Sciences , vol.55 , Issue.1 , pp. 119-139
    • Freund, Y.1    Schapire, R.2
  • 26
    • 38049158166 scopus 로고    scopus 로고
    • J. Gama and P.P. Rodrigues, Stream-Based Electricity Load Forecast, in: Proceedings of PKDD 2007, Lecture Notes in Artificial Intelligence 4702, J.N. Kok, ed., Warsaw, Poland, 2007, pp. 446-453.
    • J. Gama and P.P. Rodrigues, Stream-Based Electricity Load Forecast, in: Proceedings of PKDD 2007, Lecture Notes in Artificial Intelligence Vol. 4702, J.N. Kok, ed., Warsaw, Poland, 2007, pp. 446-453.
  • 31
    • 84994037050 scopus 로고    scopus 로고
    • Dynamic classifier selection based on multiple classifier behaviour
    • G. Giacinto and F. Roli, Dynamic classifier selection based on multiple classifier behaviour, Pattern Recognition 34(9) (2001), 1879-1881.
    • (2001) Pattern Recognition , vol.34 , Issue.9 , pp. 1879-1881
    • Giacinto, G.1    Roli, F.2
  • 33
    • 85084737696 scopus 로고
    • Sensitivity Analysis for Feedforward Artificial Neural Networks with Differentiable Activation Functions
    • H. Hashem, Sensitivity Analysis for Feedforward Artificial Neural Networks with Differentiable Activation Functions, in: Proceedings of 1992 International Joint Conference on Neural Networks IJCNN92 I 1992, pp. 419-424.
    • (1992) Proceedings of 1992 International Joint Conference on Neural Networks IJCNN92 , vol.1 , pp. 419-424
    • Hashem, H.1
  • 35
    • 0030654389 scopus 로고    scopus 로고
    • Algorithmic Stability and Sanity-Check Bounds for Leave-one-Out Cross-Validation
    • M.J. Kearns and D. Ron, Algorithmic Stability and Sanity-Check Bounds for Leave-one-Out Cross-Validation, in: Computational Learing Theory 1997, pp. 152-162.
    • (1997) Computational Learing Theory , pp. 152-162
    • Kearns, M.J.1    Ron, D.2
  • 36
    • 0035979259 scopus 로고    scopus 로고
    • Bootstrapping cluster analysis: Assessing the reliability of conclusions from microarray experiments
    • M. Kerr and G. Churchill, Bootstrapping cluster analysis: Assessing the reliability of conclusions from microarray experiments, Proc Natl Acad Sci USA 96 (2001), 8961-8965.
    • (2001) Proc Natl Acad Sci USA , vol.96 , pp. 8961-8965
    • Kerr, M.1    Churchill, G.2
  • 38
    • 77955008439 scopus 로고    scopus 로고
    • Experimental Designs for Sensitivity Analysis of Simulation Models
    • J. Kleijnen, Experimental Designs for Sensitivity Analysis of Simulation Models, tutorial at the Eurosim 2001 Conference, 2001.
    • (2001) tutorial at the Eurosim 2001 Conference
    • Kleijnen, J.1
  • 40
    • 84945287811 scopus 로고    scopus 로고
    • Reliable Classifications with Machine Learning
    • Springer Verlag, Helsinki, Finland
    • M. Kukar and I. Kononenko, Reliable Classifications with Machine Learning, in: Proceedings of Machine Learning: ECML-2002, Springer Verlag, Helsinki, Finland, 2002, pp. 219-231.
    • (2002) Proceedings of Machine Learning: ECML-2002 , pp. 219-231
    • Kukar, M.1    Kononenko, I.2
  • 46
    • 84888630337 scopus 로고    scopus 로고
    • Assessing Cluster Quality Using Multiple Measures - A Decision Tree Based Approach
    • Springer US
    • K. Osei-Bryson, Assessing Cluster Quality Using Multiple Measures - A Decision Tree Based Approach, in: The Next Wave in Computing, Optimization, and Decision Technologies, Springer US, 2005, pp. 371-384.
    • (2005) The Next Wave in Computing, Optimization, and Decision Technologies , pp. 371-384
    • Osei-Bryson, K.1
  • 47
    • 0036060632 scopus 로고    scopus 로고
    • Stochastic learning methods- for dynamic neural networks: Simulated and real-data comparisons
    • Inst. of Control & Comput. Eng, Poland
    • K. Patan and T. Parisini, Stochastic learning methods- for dynamic neural networks: Simulated and real-data comparisons, in: Proceedings of the American Control Conference, Inst. of Control & Comput. Eng., Poland, 2002, pp. 2577-2582.
    • (2002) Proceedings of the American Control Conference , pp. 2577-2582
    • Patan, K.1    Parisini, T.2
  • 48
    • 65449169737 scopus 로고    scopus 로고
    • The State of Boosting
    • Technical Report, University of Washington Seattle
    • G. Ridgeway, The State of Boosting, Technical Report, University of Washington Seattle, 1998.
    • (1998)
    • Ridgeway, G.1
  • 50
    • 19544375922 scopus 로고    scopus 로고
    • On Kernel Principal Component Regression with Covariance Inflation Criterion or Model Selection
    • Technical Report, University of Paisley
    • R. Rosipal, M. Girolami and L. Trejo, On Kernel Principal Component Regression with Covariance Inflation Criterion or Model Selection, Technical Report, University of Paisley, 2000.
    • (2000)
    • Rosipal, R.1    Girolami, M.2    Trejo, L.3
  • 53
    • 84880657197 scopus 로고    scopus 로고
    • Transduction with Confidence and Credibility
    • C. Saunders, A. Gammerman and V. Vovk, Transduction with Confidence and Credibility, in: Proceedings of IJCAI 2, 1999, pp. 722-726.
    • (1999) Proceedings of IJCAI , vol.2 , pp. 722-726
    • Saunders, C.1    Gammerman, A.2    Vovk, V.3
  • 55
    • 0001108227 scopus 로고    scopus 로고
    • Constructive Incremental Learning from Only Local Information
    • S. Schaal and C.G. Atkeson, Constructive Incremental Learning from Only Local Information, Neural Computation 10(8) (1998), 2047-2084.
    • (1998) Neural Computation , vol.10 , Issue.8 , pp. 2047-2084
    • Schaal, S.1    Atkeson, C.G.2
  • 56
    • 84880692052 scopus 로고    scopus 로고
    • R.E. Schapire, A Brief Introduction to Boosting, in: Proceedings of IJCAI, 1999, pp. 1401-1406.
    • R.E. Schapire, A Brief Introduction to Boosting, in: Proceedings of IJCAI, 1999, pp. 1401-1406.
  • 57
    • 65449184280 scopus 로고    scopus 로고
    • J. Schmidhuber and J. Storck, Reinforcement driven information acquisition in nondeterministic environments, Technical Report, Technische Universitat Munchen, 1993.
    • J. Schmidhuber and J. Storck, Reinforcement driven information acquisition in nondeterministic environments, Technical Report, Technische Universitat Munchen, 1993.
  • 58
    • 0005977840 scopus 로고    scopus 로고
    • Learning with labeled and unlabeled data
    • Technical Report
    • M. Seeger, Learning with labeled and unlabeled data, Technical Report, http://www.dai.ed.ac.uk/seeger/papers.html, 2000.
    • (2000)
    • Seeger, M.1
  • 65
    • 85158158334 scopus 로고
    • A Complexity Analysis of Cooperative Mechanisms in Reinforcement Learning
    • S.D. Whitehead, A Complexity Analysis of Cooperative Mechanisms in Reinforcement Learning, in: Proceedings of AAAI, 1991, pp. 607-613.
    • (1991) Proceedings of AAAI , pp. 607-613
    • Whitehead, S.D.1
  • 66
    • 65449155226 scopus 로고    scopus 로고
    • Wikipedia, the free encyclopedia, Confidence Interval, http://en.wikipedia.org/wiki/Confidence_interval, august 2007.
    • Wikipedia, the free encyclopedia, Confidence Interval, http://en.wikipedia.org/wiki/Confidence_interval, august 2007.
  • 67
    • 65449138049 scopus 로고    scopus 로고
    • Wikipedia, the free encyclopedia, Reliability, http://en.wikipedia.org/wiki/Reliability, august 2007.
    • Wikipedia, the free encyclopedia, Reliability, http://en.wikipedia.org/wiki/Reliability, august 2007.
  • 68
    • 0026692226 scopus 로고
    • Stacked Generalization
    • D.H. Wolpert, Stacked Generalization, Neural Networks 5 (1992), 241-259.
    • (1992) Neural Networks , vol.5 , pp. 241-259
    • Wolpert, D.H.1
  • 69
    • 0031121318 scopus 로고    scopus 로고
    • Combination of Multiple Classifiers Using Local Accuracy Estimates
    • K. Woods, W.P. Kegelmeyer and K. Bowyer, Combination of Multiple Classifiers Using Local Accuracy Estimates, IEEE Transactions on PAMI 19(4) (1997), 405-410.
    • (1997) IEEE Transactions on PAMI , vol.19 , Issue.4 , pp. 405-410
    • Woods, K.1    Kegelmeyer, W.P.2    Bowyer, K.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.