-
2
-
-
84981462495
-
-
A. Eschenmoser, L. Ruzicka, O. Jeger, and D. Arigoni Helv. Chim. Acta 38 1955 1890 1904 For a recent perspective on this work fifty years after its original publication, see:
-
(1955)
Helv. Chim. Acta
, vol.38
, pp. 1890-1904
-
-
Eschenmoser, A.1
Ruzicka, L.2
Jeger, O.3
Arigoni, D.4
-
4
-
-
77954242727
-
-
For reviews, see:
-
For reviews, see:
-
-
-
-
6
-
-
30744447448
-
-
R.A. Yoder, and J.N. Johnston Chem. Rev. 105 2005 4730 4756 For a recent paper, including excellent references to the primary literature, see:
-
(2005)
Chem. Rev.
, vol.105
, pp. 4730-4756
-
-
Yoder, R.A.1
Johnston, J.N.2
-
8
-
-
77954242317
-
-
For the isolation of the napyradiomycins, see:
-
For the isolation of the napyradiomycins, see:
-
-
-
-
9
-
-
0023636626
-
-
K. Shiomi, H. Nakamura, H. Iinuma, H. Naganawa, T. Takeuchi, H. Umezawa, and Y. Iitaka J. Antibiot. 40 1987 1213 1219
-
(1987)
J. Antibiot.
, vol.40
, pp. 1213-1219
-
-
Shiomi, K.1
Nakamura, H.2
Iinuma, H.3
Naganawa, H.4
Takeuchi, T.5
Umezawa, H.6
Iitaka, Y.7
-
10
-
-
0022649395
-
-
K. Shiomi, H. Iinuma, M. Hamada, H. Naganawa, M. Manabe, C. Matsuki, T. Takeuchi, and H. Umezawa J. Antibiot. 39 1986 487 493
-
(1986)
J. Antibiot.
, vol.39
, pp. 487-493
-
-
Shiomi, K.1
Iinuma, H.2
Hamada, M.3
Naganawa, H.4
Manabe, M.5
Matsuki, C.6
Takeuchi, T.7
Umezawa, H.8
-
11
-
-
0022637236
-
-
K. Shiomi, H. Nakamura, H. Iinuma, H. Naganawa, K. Isshiki, T. Takeuchi, H. Umezawa, and Y. Iitaka J. Antibiot. 39 1986 494 501
-
(1986)
J. Antibiot.
, vol.39
, pp. 494-501
-
-
Shiomi, K.1
Nakamura, H.2
Iinuma, H.3
Naganawa, H.4
Isshiki, K.5
Takeuchi, T.6
Umezawa, H.7
Iitaka, Y.8
-
12
-
-
77954242709
-
-
For a recent asymmetric total synthesis of napyradiomycin A1 (1), see:
-
For a recent asymmetric total synthesis of napyradiomycin A1 (1), see:
-
-
-
-
15
-
-
77954241803
-
-
For work illustrating that both the snyderols and the napyradiomycins are prepared via vanadium-based haloperoxidases, see:
-
For work illustrating that both the snyderols and the napyradiomycins are prepared via vanadium-based haloperoxidases, see:
-
-
-
-
17
-
-
34447558011
-
-
J.M. Winter, M.C. Moffitt, E. Zazopoulos, J.B. McAlpine, P.C. Dorrestein, and B.S. Moore J. Biol. Chem. 282 2007 16362 16368 For more recent references, see:
-
(2007)
J. Biol. Chem.
, vol.282
, pp. 16362-16368
-
-
Winter, J.M.1
Moffitt, M.C.2
Zazopoulos, E.3
McAlpine, J.B.4
Dorrestein, P.C.5
Moore, B.S.6
-
21
-
-
77954244969
-
-
For reviews, see:
-
For reviews, see:
-
-
-
-
22
-
-
33748588122
-
-
F.A. Vaillancourt, E. Yeh, D.A. Vosburg, S. Garneau-Tsodikova, and C.T. Walsh Chem. Rev. 106 2006 3364 3378
-
(2006)
Chem. Rev.
, vol.106
, pp. 3364-3378
-
-
Vaillancourt, F.A.1
Yeh, E.2
Vosburg, D.A.3
Garneau-Tsodikova, S.4
Walsh, C.T.5
-
24
-
-
77954243109
-
-
For selected examples, see:
-
For selected examples, see:
-
-
-
-
27
-
-
0042803198
-
-
T. Kato, I. Ichinose, A. Kamoshida, and Y. Kitahara J. Chem. Soc., Chem. Commun. 1976 518 519
-
(1976)
J. Chem. Soc., Chem. Commun.
, pp. 518-519
-
-
Kato, T.1
Ichinose, I.2
Kamoshida, A.3
Kitahara, Y.4
-
32
-
-
0009601481
-
-
T. Kato, M. Mochizuki, T. Hirano, S. Fujiwara, and T. Uyehara J. Chem. Soc., Chem. Commun. 1984 1077 1078
-
(1984)
J. Chem. Soc., Chem. Commun.
, pp. 1077-1078
-
-
Kato, T.1
Mochizuki, M.2
Hirano, T.3
Fujiwara, S.4
Uyehara, T.5
-
37
-
-
77954242577
-
-
For the isolation of 4, see:
-
For the isolation of 4, see:
-
-
-
-
39
-
-
0035681021
-
-
D. Davyt, R. Fernandez, L. Suescun, A.W. Mombrú, J. Saldaña, L. Domínguez, J. Coll, M.T. Fujii, and E. Manta J. Nat. Prod. 64 2001 1552 1555 For the isolation of 5, see:
-
(2001)
J. Nat. Prod.
, vol.64
, pp. 1552-1555
-
-
Davyt, D.1
Fernandez, R.2
Suescun, L.3
Mombrú, A.W.4
Saldaña, J.5
Domínguez, L.6
Coll, J.7
Fujii, M.T.8
Manta, E.9
-
41
-
-
0001655184
-
-
For an excellent review on halogenated natural products, see: G.W. Gribble Acc. Chem. Res. 31 1998 141 152
-
(1998)
Acc. Chem. Res.
, vol.31
, pp. 141-152
-
-
Gribble, G.W.1
-
45
-
-
77950341605
-
-
S.E. Denmark, M.T. Burk, and A.J. Hoover J. Am. Chem. Soc. 132 2010 1232 1233 For similar challenges in achieving the enantioselective addition of chalcogens such as sulfur onto alkenes, see:
-
(2010)
J. Am. Chem. Soc.
, vol.132
, pp. 1232-1233
-
-
Denmark, S.E.1
Burk, M.T.2
Hoover, A.J.3
-
47
-
-
77954243423
-
-
For some recent examples of the initial step, see:
-
For some recent examples of the initial step, see:
-
-
-
-
54
-
-
77954242241
-
-
For selected examples, see:
-
For selected examples, see:
-
-
-
-
59
-
-
0346392149
-
-
H. Takao, A. Wakabayashi, K. Takahashi, H. Imagawa, T. Sugihara, and M. Nishizawa Tetrahedron Lett. 45 2004 1079 1082
-
(2004)
Tetrahedron Lett.
, vol.45
, pp. 1079-1082
-
-
Takao, H.1
Wakabayashi, A.2
Takahashi, K.3
Imagawa, H.4
Sugihara, T.5
Nishizawa, M.6
-
60
-
-
84995326853
-
-
M. Nishizawa, E. Morikuni, K. Asoh, Y. Kan, K. Uenoyama, and H. Imagawa Synlett 1995 169 170
-
(1995)
Synlett
, pp. 169-170
-
-
Nishizawa, M.1
Morikuni, E.2
Asoh, K.3
Kan, Y.4
Uenoyama, K.5
Imagawa, H.6
-
65
-
-
0004279678
-
-
McGraw Hill New York, NY
-
Direct chlorine replacement with retention is, to the best of our knowledge, unknown in the primary literature. However, a few isolated examples, some with high control and others with little selectivity, are mentioned as unpublished results in the following monograph: F.R. Jensen, and B. Rickborn Electrophilic Substitution of Organomercurials 1968 McGraw Hill New York, NY pp 75-100
-
(1968)
Electrophilic Substitution of Organomercurials
-
-
Jensen, F.R.1
Rickborn, B.2
-
68
-
-
22144438293
-
-
S.H. Kang, S.Y. Kang, C.M. Park, H.Y. Kwon, and M. Kim Pure Appl. Chem. 77 2005 1269 1276
-
(2005)
Pure Appl. Chem.
, vol.77
, pp. 1269-1276
-
-
Kang, S.H.1
Kang, S.Y.2
Park, C.M.3
Kwon, H.Y.4
Kim, M.5
-
70
-
-
27744516305
-
-
T. Sugita, Y. Yamasaki, O. Itoh, and K. Ichikawa Bull. Chem. Soc. Jpn. 47 1974 1945 1947 Enantioselectivities in these cases were, at best, between 25 and 35%, though 5-15% was common for many substrates
-
(1974)
Bull. Chem. Soc. Jpn.
, vol.47
, pp. 1945-1947
-
-
Sugita, T.1
Yamasaki, Y.2
Itoh, O.3
Ichikawa, K.4
-
71
-
-
77954243979
-
-
2O, and hexanes. In addition, the use of chiral ligands that decreased the electrophilicity of the metal center and thus led to the need for elevated reaction temperatures might also have been deleterious to enantiocontrol.
-
2O, and hexanes. In addition, the use of chiral ligands that decreased the electrophilicity of the metal center and thus led to the need for elevated reaction temperatures might also have been deleterious to enantiocontrol.
-
-
-
-
74
-
-
77954242377
-
-
These ligands were prepared primarily following the procedures of:
-
These ligands were prepared primarily following the procedures of:
-
-
-
-
75
-
-
0000070865
-
-
D.A. Evans, G.S. Peterson, J.S. Johnson, D.M. Barnes, K.R. Campos, and K.A. Woerpel J. Org. Chem. 63 1998 4541 4544
-
(1998)
J. Org. Chem.
, vol.63
, pp. 4541-4544
-
-
Evans, D.A.1
Peterson, G.S.2
Johnson, J.S.3
Barnes, D.M.4
Campos, K.R.5
Woerpel, K.A.6
-
79
-
-
77954242951
-
-
For reviews on this ligand class, see:
-
For reviews on this ligand class, see:
-
-
-
-
83
-
-
77954243047
-
-
Interestingly, if the mono-oxazoline version of the same ligand class was used, we achieved the opposite stereoselection with substrate 21 as indicated in the table below. Mono-oxazoline ligands have been used effectively in asymmetric reactions only on a few occasions: M. Yamauchi, T. Aoki, M.-Z. Li, and Y. Honda Tetrahedron: Asymmetry 12 2001 3133 3138
-
(2001)
Tetrahedron: Asymmetry
, vol.12
, pp. 3133-3138
-
-
Yamauchi, M.1
Aoki, T.2
Li, M.-Z.3
Honda, Y.4
-
84
-
-
77954244472
-
-
In all these studies, a reaction temperature of -78 °C was utilized; lower temperatures did not lead to improved enantioselectivity, though erosion was observed above -50 °C.
-
In all these studies, a reaction temperature of -78 °C was utilized; lower temperatures did not lead to improved enantioselectivity, though erosion was observed above -50 °C.
-
-
-
-
85
-
-
77954244753
-
-
2/bis-oxazoline complex to assist in our transition state model, but have been unsuccessful thus far in our efforts. For two simpler Hg(II)-based crystal structures, see:
-
2/bis-oxazoline complex to assist in our transition state model, but have been unsuccessful thus far in our efforts. For two simpler Hg(II)-based crystal structures, see:
-
-
-
-
88
-
-
77954242863
-
-
For the isolation of this natural product, see:
-
For the isolation of this natural product, see:
-
-
-
-
89
-
-
0024429564
-
-
M.E. Wall, M.C. Wani, G. Manikumar, H. Taylor, T.J. Hughes, K. Gaetano, W.H. Gerwick, A.T. McPhail, and D.R. McPhail J. Nat. Prod. 52 1989 1092 1099
-
(1989)
J. Nat. Prod.
, vol.52
, pp. 1092-1099
-
-
Wall, M.E.1
Wani, M.C.2
Manikumar, G.3
Taylor, H.4
Hughes, T.J.5
Gaetano, K.6
Gerwick, W.H.7
McPhail, A.T.8
McPhail, D.R.9
-
91
-
-
0005990450
-
-
For a previous total synthesis of this compound, see: A. Tanaka, and T. Oritani Biosci. Biotechnol. Biochem. 59 1995 516 517 Ref. 8 provides an improved synthesis
-
(1995)
Biosci. Biotechnol. Biochem.
, vol.59
, pp. 516-517
-
-
Tanaka, A.1
Oritani, T.2
-
92
-
-
13844276158
-
-
2Hg are quite dangerous, higher molecular weight organomercurials are not anywhere near as toxic, and in fact are used in agrochemicals and medicine: H. Imagawa, T. Iyenaga, and M. Nishizawa Org. Lett. 7 2005 451 453 See also Ref. 20
-
(2005)
Org. Lett.
, vol.7
, pp. 451-453
-
-
Imagawa, H.1
Iyenaga, T.2
Nishizawa, M.3
-
93
-
-
77954243383
-
-
For selected examples of carbon replacement, see:
-
For selected examples of carbon replacement, see:
-
-
-
-
95
-
-
0033597991
-
-
A.L. Tökés, G. Litkei, K. Gulácsi, S. Antus, E. Baits-Gács, C. Szántay, and L.L. Darkó Tetrahedron 55 1999 9283 9296
-
(1999)
Tetrahedron
, vol.55
, pp. 9283-9296
-
-
Tökés, A.L.1
Litkei, G.2
Gulácsi, K.3
Antus, S.4
Baits-Gács, E.5
Szántay, C.6
Darkó, L.L.7
|