-
1
-
-
0003432299
-
-
John Wiley & Sons, Hoboken, NJ, USA
-
Lee E.T., Wang J.W. Statistical methods for survival data analysis 2003, John Wiley & Sons, Hoboken, NJ, USA. 3rd ed.
-
(2003)
Statistical methods for survival data analysis
-
-
Lee, E.T.1
Wang, J.W.2
-
2
-
-
0000336139
-
Regression models and life-tables
-
Cox D.R. Regression models and life-tables. J R Stat Soc B (Methodological) 1972, 34(2):187-220.
-
(1972)
J R Stat Soc B (Methodological)
, vol.34
, Issue.2
, pp. 187-220
-
-
Cox, D.R.1
-
3
-
-
0003802343
-
-
Wadsworth & Brooks/Cole Advanced Books & Software, Monterey, CA, USA
-
Breiman L., Friedman J.H., Olshen R.A., Stone C.J. Classification and regression trees 1984, Wadsworth & Brooks/Cole Advanced Books & Software, Monterey, CA, USA.
-
(1984)
Classification and regression trees
-
-
Breiman, L.1
Friedman, J.H.2
Olshen, R.A.3
Stone, C.J.4
-
5
-
-
0344457318
-
Prognostic methods in medicine
-
Lucas P., Abu-Hanna A. Prognostic methods in medicine. Artif Intell Med 1999, 15(2):105-119.
-
(1999)
Artif Intell Med
, vol.15
, Issue.2
, pp. 105-119
-
-
Lucas, P.1
Abu-Hanna, A.2
-
8
-
-
70350728384
-
Impact of censoring on learning Bayesian networks in survival modelling
-
Štajduhar I., Dalbelo-Bašić B., Bogunović N. Impact of censoring on learning Bayesian networks in survival modelling. Artif Intell Med 2009, 47(3):199-217.
-
(2009)
Artif Intell Med
, vol.47
, Issue.3
, pp. 199-217
-
-
Štajduhar, I.1
Dalbelo-Bašić, B.2
Bogunović, N.3
-
9
-
-
0343081009
-
Machine learning for survival analysis: a case study on recurrence of prostate cancer
-
Zupan B., Demšar J., Kattan M.W., Beck R., Bratko I. Machine learning for survival analysis: a case study on recurrence of prostate cancer. Artif Intell Med 2000, 20(1):59-75.
-
(2000)
Artif Intell Med
, vol.20
, Issue.1
, pp. 59-75
-
-
Zupan, B.1
Demšar, J.2
Kattan, M.W.3
Beck, R.4
Bratko, I.5
-
10
-
-
33845382806
-
Nonparametric estimation from incomplete observations
-
Kaplan E.L., Meier P. Nonparametric estimation from incomplete observations. J Am Stat Assoc 1958, 53:457-481.
-
(1958)
J Am Stat Assoc
, vol.53
, pp. 457-481
-
-
Kaplan, E.L.1
Meier, P.2
-
11
-
-
19344364327
-
Predicting breast cancer survivability: a comparison of three data mining methods
-
Delen D., Walker G., Kadam A. Predicting breast cancer survivability: a comparison of three data mining methods. Artif Intell Med 2005, 34(2):113-127.
-
(2005)
Artif Intell Med
, vol.34
, Issue.2
, pp. 113-127
-
-
Delen, D.1
Walker, G.2
Kadam, A.3
-
12
-
-
77954143839
-
Expert knowledge and its role in learning Bayesian networks in medicine
-
Lucas P. Expert knowledge and its role in learning Bayesian networks in medicine. Lect Notes Comput Sci 2001, 2101:156-166.
-
(2001)
Lect Notes Comput Sci
, vol.2101
, pp. 156-166
-
-
Lucas, P.1
-
13
-
-
0031047117
-
Artificial neural networks improve the accuracy of cancer survival prediction
-
Burke H.B., Goodman P.H., Rosen D.B., Henson D.E., Weinstein J.N., Harrell F.E., et al. Artificial neural networks improve the accuracy of cancer survival prediction. Cancer 1997, 79(4):857-862.
-
(1997)
Cancer
, vol.79
, Issue.4
, pp. 857-862
-
-
Burke, H.B.1
Goodman, P.H.2
Rosen, D.B.3
Henson, D.E.4
Weinstein, J.N.5
Harrell, F.E.6
-
14
-
-
0013288412
-
Dynamic Bayesian networks: representation, inference and learning
-
Murphy KP. Dynamic Bayesian networks: representation, inference and learning, Ph.D. thesis. University of California; 2002.
-
(2002)
Ph.D. thesis. University of California
-
-
Murphy, K.P.1
-
16
-
-
34249832377
-
A Bayesian method for the induction of probabilistic networks from data
-
Cooper G.F., Herskovits E. A Bayesian method for the induction of probabilistic networks from data. Mach Learn 1992, 9(4):309-347.
-
(1992)
Mach Learn
, vol.9
, Issue.4
, pp. 309-347
-
-
Cooper, G.F.1
Herskovits, E.2
-
17
-
-
34249761849
-
Learning Bayesian networks: the combination of knowledge and statistical data
-
Heckerman D., Geiger D., Chickering D.M. Learning Bayesian networks: the combination of knowledge and statistical data. Mach Learn 1995, 20(3):197-243.
-
(1995)
Mach Learn
, vol.20
, Issue.3
, pp. 197-243
-
-
Heckerman, D.1
Geiger, D.2
Chickering, D.M.3
-
18
-
-
0042967741
-
Optimal structure identification with greedy search
-
Chickering D.M. Optimal structure identification with greedy search. J Mach Learn Res 2002, 3:507-554.
-
(2002)
J Mach Learn Res
, vol.3
, pp. 507-554
-
-
Chickering, D.M.1
-
19
-
-
0037262841
-
Being Bayesian about network structure. A Bayesian approach to structure discovery in Bayesian networks
-
Friedman N., Koller D. Being Bayesian about network structure. A Bayesian approach to structure discovery in Bayesian networks. Mach Learn 2003, 50(1):95-125.
-
(2003)
Mach Learn
, vol.50
, Issue.1
, pp. 95-125
-
-
Friedman, N.1
Koller, D.2
-
20
-
-
0028482006
-
Learning Bayesian belief networks: an approach based on the MDL principle
-
Lam W., Bacchus F. Learning Bayesian belief networks: an approach based on the MDL principle. Comput Intell 1994, 10(4):269-293.
-
(1994)
Comput Intell
, vol.10
, Issue.4
, pp. 269-293
-
-
Lam, W.1
Bacchus, F.2
-
21
-
-
0003398906
-
-
Cambridge University Press, Cambridge, UK
-
Pearl J. Causality: models, reasoning, and inference 2000, Cambridge University Press, Cambridge, UK.
-
(2000)
Causality: models, reasoning, and inference
-
-
Pearl, J.1
-
22
-
-
0003614273
-
-
MIT Press, Cambridge, MA, USA
-
Spirtes P., Glymour C., Scheines R. Causation, prediction, and search 2000, MIT Press, Cambridge, MA, USA.
-
(2000)
Causation, prediction, and search
-
-
Spirtes, P.1
Glymour, C.2
Scheines, R.3
-
23
-
-
0036567524
-
Learning Bayesian networks from data: an information-theory based approach
-
Cheng J., Greiner R., Kelly J., Bell D., Liu W. Learning Bayesian networks from data: an information-theory based approach. Artif Intell 2002, 137(1-2):43-90.
-
(2002)
Artif Intell
, vol.137
, Issue.1-2
, pp. 43-90
-
-
Cheng, J.1
Greiner, R.2
Kelly, J.3
Bell, D.4
Liu, W.5
-
25
-
-
0003957032
-
-
Morgan Kaufman, San Francisco, CA, USA
-
Witten I.H., Frank E. Data mining: practical machine learning tools and techniques 2005, Morgan Kaufman, San Francisco, CA, USA.
-
(2005)
Data mining: practical machine learning tools and techniques
-
-
Witten, I.H.1
Frank, E.2
-
26
-
-
0003584577
-
-
Prentice Hall, Upper Saddle River, NJ, USA
-
Russell S.J., Norvig P. Artificial intelligence: a modern approach 2002, Prentice Hall, Upper Saddle River, NJ, USA. second ed.
-
(2002)
Artificial intelligence: a modern approach
-
-
Russell, S.J.1
Norvig, P.2
-
27
-
-
0001775899
-
An algorithm for deciding if a set of observed independencies has a causal explanation
-
San Fransisco, CA, USA: Morgan Kaufmann
-
Verma T, Pearl J. An algorithm for deciding if a set of observed independencies has a causal explanation. In: Dubois D, Wellman MP editors. Proceedings of the 8th annual conference on uncertainty in artificial intelligence. San Fransisco, CA, USA: Morgan Kaufmann; 1992. p. 323-330.
-
(1992)
Dubois D, Wellman MP editors. Proceedings of the 8th annual conference on uncertainty in artificial intelligence
, pp. 323-330
-
-
Verma, T.1
Pearl, J.2
-
28
-
-
0028148549
-
Artificial neural networks in the diagnosis and prognosis of prostate cancer: a pilot study
-
Snow P.B., Smith D.S., Catalona W.J. Artificial neural networks in the diagnosis and prognosis of prostate cancer: a pilot study. J Urol 1994, 152(5):1923-1926.
-
(1994)
J Urol
, vol.152
, Issue.5
, pp. 1923-1926
-
-
Snow, P.B.1
Smith, D.S.2
Catalona, W.J.3
-
29
-
-
1842856149
-
A combined neural network and decision trees model for prognosis of breast cancer relapse
-
Jerez-Aragonés J., Gómez-Ruiz J., Ramos-Jiménez G., Muñoz-Pérez J., Alba-Conejo E. A combined neural network and decision trees model for prognosis of breast cancer relapse. Artif Intell Med 2003, 27(1):45-63.
-
(2003)
Artif Intell Med
, vol.27
, Issue.1
, pp. 45-63
-
-
Jerez-Aragonés, J.1
Gómez-Ruiz, J.2
Ramos-Jiménez, G.3
Muñoz-Pérez, J.4
Alba-Conejo, E.5
-
30
-
-
0038162240
-
A Bayesian neural network approach for modelling censored data with an application to prognosis after surgery for breast cancer
-
Lisboa P.J.G., Wong H., Harris P., Swindell R. A Bayesian neural network approach for modelling censored data with an application to prognosis after surgery for breast cancer. Artif Intell Med 2003, 28(1):1-25.
-
(2003)
Artif Intell Med
, vol.28
, Issue.1
, pp. 1-25
-
-
Lisboa, P.J.G.1
Wong, H.2
Harris, P.3
Swindell, R.4
-
31
-
-
0006117317
-
Neural networks as statistical methods in survival analysis
-
Cambridge University Press, Cambridge, UK, V. Gant, R. Dybowski (Eds.)
-
Ripley B.D., Ripley R.M. Neural networks as statistical methods in survival analysis. Clinical applications of artificial neural networks 2001, 237-255. Cambridge University Press, Cambridge, UK. V. Gant, R. Dybowski (Eds.).
-
(2001)
Clinical applications of artificial neural networks
, pp. 237-255
-
-
Ripley, B.D.1
Ripley, R.M.2
-
32
-
-
47049127967
-
Sparse Kernel methods for high-dimensional survival data
-
Evers L., Messow C.-M. Sparse Kernel methods for high-dimensional survival data. Bioinformatics 2008, 24(14):1632-1638.
-
(2008)
Bioinformatics
, vol.24
, Issue.14
, pp. 1632-1638
-
-
Evers, L.1
Messow, C.-M.2
-
33
-
-
0344447109
-
Predicting survival in malignant skin melanoma using Bayesian networks automatically induced by genetic algorithms. An empirical comparison between different approaches
-
Sierra B., Larranaga P. Predicting survival in malignant skin melanoma using Bayesian networks automatically induced by genetic algorithms. An empirical comparison between different approaches. Artif Intell Med 1998, 14(1-2):215-230.
-
(1998)
Artif Intell Med
, vol.14
, Issue.1-2
, pp. 215-230
-
-
Sierra, B.1
Larranaga, P.2
-
34
-
-
84974667967
-
Learning dynamic Bayesian belief networks using conditional phase-type distributions
-
Marshall A., McClean S., Shapcott M., Millard P. Learning dynamic Bayesian belief networks using conditional phase-type distributions. Lect Notes Comput Sci 2000, 516-523.
-
(2000)
Lect Notes Comput Sci
, pp. 516-523
-
-
Marshall, A.1
McClean, S.2
Shapcott, M.3
Millard, P.4
-
35
-
-
19944372078
-
Generating survival times to simulate Cox proportional hazards models
-
Bender R., Augustin T., Blettner M. Generating survival times to simulate Cox proportional hazards models. Stat Med 2005, 24:1713-1723.
-
(2005)
Stat Med
, vol.24
, pp. 1713-1723
-
-
Bender, R.1
Augustin, T.2
Blettner, M.3
-
36
-
-
0003684449
-
-
Springer, New York, NY, USA
-
Hastie T., Tibshirani R., Friedman J. The elements of statistical learning: data mining, inference, and prediction 2001, Springer, New York, NY, USA.
-
(2001)
The elements of statistical learning: data mining, inference, and prediction
-
-
Hastie, T.1
Tibshirani, R.2
Friedman, J.3
-
37
-
-
1442351098
-
A new measure of prognostic separation in survival data
-
Royston P., Sauerbrei W. A new measure of prognostic separation in survival data. Stat Med 2004, 23(5):723-748.
-
(2004)
Stat Med
, vol.23
, Issue.5
, pp. 723-748
-
-
Royston, P.1
Sauerbrei, W.2
-
38
-
-
29644438050
-
Statistical comparisons of classifiers over multiple data sets
-
Demšar J. Statistical comparisons of classifiers over multiple data sets. J Mach Learn Res 2006, 7:1-30.
-
(2006)
J Mach Learn Res
, vol.7
, pp. 1-30
-
-
Demšar, J.1
-
39
-
-
0001750957
-
Approximations of the critical region of the Friedman statistic
-
Iman R.L., Davenport J.M. Approximations of the critical region of the Friedman statistic. Commun Stat Theory Methods 1980, 9(6):571-595.
-
(1980)
Commun Stat Theory Methods
, vol.9
, Issue.6
, pp. 571-595
-
-
Iman, R.L.1
Davenport, J.M.2
-
41
-
-
0028080742
-
Randomized 2×2 trial evaluating hormonal treatment and the duration of chemotherapy in node-positive breast cancer patients. German breast cancer study group
-
Schumacher M., Bastert G., Bojar H., Hubner K., Olschewski M., Sauerbrei W., et al. Randomized 2×2 trial evaluating hormonal treatment and the duration of chemotherapy in node-positive breast cancer patients. German breast cancer study group. J Clin Oncol 1994, 12(10):2086-2093.
-
(1994)
J Clin Oncol
, vol.12
, Issue.10
, pp. 2086-2093
-
-
Schumacher, M.1
Bastert, G.2
Bojar, H.3
Hubner, K.4
Olschewski, M.5
Sauerbrei, W.6
-
42
-
-
27644559962
-
-
R: a Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, AT. Available from: [accessed 31.12.2009]
-
R Development Core Team. R: a Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, AT. Available from: ; 2008 [accessed 31.12.2009]. http://www.R-project.org.
-
(2008)
R Development Core Team
-
-
-
43
-
-
0032626964
-
An application of changepoint methods in studying the effect of age on survival in breast cancer
-
Contal C., O'Quigley J. An application of changepoint methods in studying the effect of age on survival in breast cancer. Comput Stat Data Anal 1999, 30(3):253-270.
-
(1999)
Comput Stat Data Anal
, vol.30
, Issue.3
, pp. 253-270
-
-
Contal, C.1
O'Quigley, J.2
-
44
-
-
0003440032
-
-
Springer, New York, NY, USA
-
Klein J.P., Moeschberger M.L. Survival analysis: techniques for censored and truncated data 2003, Springer, New York, NY, USA. second ed.
-
(2003)
Survival analysis: techniques for censored and truncated data
-
-
Klein, J.P.1
Moeschberger, M.L.2
-
45
-
-
84944363874
-
Evaluating the yield of medical tests
-
Harrell F.E., Califf R.M., Pryor D.B., Lee K.L., Rosati R.A. Evaluating the yield of medical tests. J Am Med Assoc 1982, 247(18):2543-2546.
-
(1982)
J Am Med Assoc
, vol.247
, Issue.18
, pp. 2543-2546
-
-
Harrell, F.E.1
Califf, R.M.2
Pryor, D.B.3
Lee, K.L.4
Rosati, R.A.5
-
46
-
-
85017377596
-
-
John Wiley & Sons, Hoboken, NJ, USA
-
Corder G.W., Foreman D.I. Nonparametric statistics for non-statisticians: a step-by-step approach 2009, John Wiley & Sons, Hoboken, NJ, USA.
-
(2009)
Nonparametric statistics for non-statisticians: a step-by-step approach
-
-
Corder, G.W.1
Foreman, D.I.2
-
47
-
-
0000259511
-
Approximate statistical tests for comparing supervised classification learning algorithms
-
Dietterich T.G. Approximate statistical tests for comparing supervised classification learning algorithms. Neural Comput 1998, 10(7):1895-1923.
-
(1998)
Neural Comput
, vol.10
, Issue.7
, pp. 1895-1923
-
-
Dietterich, T.G.1
|