메뉴 건너뛰기




Volumn 85, Issue 12, 2005, Pages 2304-2315

Unsupervised signal restoration using hidden Markov chains with copulas

Author keywords

Bayesian restoration; Copulas; Hidden Markov chains; Pairwise Markov chains; Parameter estimation; Statistical image segmentation; Stochastic expectation maximization; Triplet Markov chains

Indexed keywords

IMAGE SEGMENTATION; MARKOV PROCESSES; PARAMETER ESTIMATION; SPURIOUS SIGNAL NOISE; STATISTICAL METHODS;

EID: 27744467521     PISSN: 01651684     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.sigpro.2005.01.018     Document Type: Article
Times cited : (40)

References (38)
  • 3
    • 0242511072 scopus 로고    scopus 로고
    • A construction based analysis of child directed speech
    • T. Cameron-Faulkner, E. Lieven, and M. Tomasello A construction based analysis of child directed speech Cognitive Sci. 27 6 2003 843 873
    • (2003) Cognitive Sci. , vol.27 , Issue.6 , pp. 843-873
    • Cameron-Faulkner, T.1    Lieven, E.2    Tomasello, M.3
  • 4
    • 0842327835 scopus 로고    scopus 로고
    • Indiscriminate polyandry and male parental effort
    • M.A. Fishman, and L. Stone Indiscriminate polyandry and male parental effort Bull. Math. Biol. 66 1 2004 47 63
    • (2004) Bull. Math. Biol. , vol.66 , Issue.1 , pp. 47-63
    • Fishman, M.A.1    Stone, L.2
  • 5
    • 6444223612 scopus 로고    scopus 로고
    • Modeling dependence with copulas: A useful tool for field development decision process
    • R.M.S. Accioly, and F.Y. Chiyoshi Modeling dependence with copulas: a useful tool for field development decision process J. Petroleum Sci. Eng. 44 1-2 2004 83 91
    • (2004) J. Petroleum Sci. Eng. , vol.44 , Issue.1-2 , pp. 83-91
    • Accioly, R.M.S.1    Chiyoshi, F.Y.2
  • 7
    • 1542720912 scopus 로고    scopus 로고
    • A multivariate counting process with Weibull-distributed first-arrival times
    • F. Tuerlinckx A multivariate counting process with Weibull-distributed first-arrival times J. Math. Psychol. 48 1 2004 65 79
    • (2004) J. Math. Psychol. , vol.48 , Issue.1 , pp. 65-79
    • Tuerlinckx, F.1
  • 9
    • 0344707956 scopus 로고    scopus 로고
    • The estimation method of inference functions for margins for multivariate models
    • Department of Statistics
    • H. Joe, J.J. Xu, The estimation method of inference functions for margins for multivariate models, Department of Statistics, University of Columbia, Technical Report, 166, 1996, http://hajek.stat.ubc.ca/~harry/ifm.pdf
    • (1996) University of Columbia, Technical Report , vol.166
    • Joe, H.1    Xu, J.J.2
  • 10
    • 27744513610 scopus 로고    scopus 로고
    • Investigating dynamic dependence using copulae
    • September
    • E. Bouye, N. Gaussel, M. Salmon, Investigating dynamic dependence using copulae, Research Report, September 2001, http://www.cass.city.ac.uk/facfin/papers/Investigating Dynamic Dependence Using Copulae.pdf
    • (2001) Research Report
    • Bouye, E.1    Gaussel, N.2    Salmon, M.3
  • 11
    • 0000353178 scopus 로고
    • A maximization technique occurring in the statistical analysis of probabilistic functions of Markov chains
    • L.E. Baum, T. Petrie, G. Soules, and N. Weiss A maximization technique occurring in the statistical analysis of probabilistic functions of Markov chains Ann. Math. Statist. 41 1970 164 171
    • (1970) Ann. Math. Statist. , vol.41 , pp. 164-171
    • Baum, L.E.1    Petrie, T.2    Soules, G.3    Weiss, N.4
  • 12
    • 0015600423 scopus 로고
    • The Viterbi algorithm
    • G.D. Fornay The Viterbi algorithm Proc. IEEE 61 3 1973 268 277
    • (1973) Proc. IEEE , vol.61 , Issue.3 , pp. 268-277
    • Fornay, G.D.1
  • 13
    • 0033115274 scopus 로고    scopus 로고
    • Applications of hidden Markov chains in image analysis
    • K. Aas, L. Eikvil, and R. Bang Huseby Applications of hidden Markov chains in image analysis Pattern Recognition 32 4 1999 703 713
    • (1999) Pattern Recognition , vol.32 , Issue.4 , pp. 703-713
    • Aas, K.1    Eikvil, L.2    Bang Huseby, R.3
  • 14
    • 2942724548 scopus 로고    scopus 로고
    • Clustering of Mueller matrix images for skeletonized structure detection
    • C. Collet, J. Zallat, and Y. Takakura Clustering of Mueller matrix images for skeletonized structure detection Optics-Express 2004 1271 1280
    • (2004) Optics-Express , pp. 1271-1280
    • Collet, C.1    Zallat, J.2    Takakura, Y.3
  • 15
    • 0031147239 scopus 로고    scopus 로고
    • Estimation of Generalized Multisensor Hidden Markov Chains and Unsupervised Image Segmentation
    • N. Giordana, and W. Pieczynski Estimation of Generalized Multisensor Hidden Markov Chains and Unsupervised Image Segmentation IEEE Trans. Pattern Anal. Machine Intel. 19 5 1997 465 475
    • (1997) IEEE Trans. Pattern Anal. Machine Intel. , vol.19 , Issue.5 , pp. 465-475
    • Giordana, N.1    Pieczynski, W.2
  • 16
    • 0141907306 scopus 로고    scopus 로고
    • Estimating hidden semi-Markov chains from discrete sequences
    • Y. Guedon Estimating hidden semi-Markov chains from discrete sequences J. Comput. Graph. Statist. 12 3 2003 604 639
    • (2003) J. Comput. Graph. Statist. , vol.12 , Issue.3 , pp. 604-639
    • Guedon, Y.1
  • 17
    • 0036386424 scopus 로고    scopus 로고
    • A hidden Markov chain model for the term structure of bond credit risk spreads
    • L.C. Thomas, D.E. Allen, and N. Morkel-Kingsbury A hidden Markov chain model for the term structure of bond credit risk spreads Internat. Rev. Financial Anal. 11 3 2002 311 329
    • (2002) Internat. Rev. Financial Anal. , vol.11 , Issue.3 , pp. 311-329
    • Thomas, L.C.1    Allen, D.E.2    Morkel-Kingsbury, N.3
  • 18
    • 84947610348 scopus 로고    scopus 로고
    • Unsupervised signal restoration using Copulas and Pairwise Markov chains
    • Saint Louis, Missouri, September 28-October 1
    • N. Brunel, W. Pieczynski, Unsupervised signal restoration using Copulas and Pairwise Markov chains, IEEE Workshop on Statistical Signal Processing (SSP 2003), Saint Louis, Missouri, September 28-October 1, 2003.
    • (2003) IEEE Workshop on Statistical Signal Processing (SSP 2003)
    • Brunel, N.1    Pieczynski, W.2
  • 19
    • 4344625908 scopus 로고    scopus 로고
    • Signal and image restoration using Pairwise Markov Chains
    • S. Derrode, and W. Pieczynski Signal and image restoration using Pairwise Markov Chains IEEE Trans. Signal Processing 52 9 2004 2477 2489
    • (2004) IEEE Trans. Signal Processing , vol.52 , Issue.9 , pp. 2477-2489
    • Derrode, S.1    Pieczynski, W.2
  • 23
    • 0036613263 scopus 로고    scopus 로고
    • Modeling non Rayleigh Speckle Distribution in SAR Images
    • Y. Delignon, and W. Pieczynski Modeling non Rayleigh Speckle Distribution in SAR Images IEEE Trans. Geosci. Remote Sens. 40 6 2002 1430 1435
    • (2002) IEEE Trans. Geosci. Remote Sens. , vol.40 , Issue.6 , pp. 1430-1435
    • Delignon, Y.1    Pieczynski, W.2
  • 24
    • 0033896503 scopus 로고    scopus 로고
    • Estimation of Generalized Mixture in the Case of Correlated Sensors
    • W. Pieczynski, J. Bouvrais, and C. Michel Estimation of Generalized Mixture in the Case of Correlated Sensors IEEE Trans. Image Process. 09 2 2000 308 311
    • (2000) IEEE Trans. Image Process. , vol.9 , Issue.2 , pp. 308-311
    • Pieczynski, W.1    Bouvrais, J.2    Michel, C.3
  • 26
    • 0000038252 scopus 로고    scopus 로고
    • Asymptotics of the Maximum Likelihood Estimator for general Hidden Markov Models
    • R. Douc, and C. Matias Asymptotics of the Maximum Likelihood Estimator for general Hidden Markov Models Bernoulli 7 3 2001 381 420
    • (2001) Bernoulli , vol.7 , Issue.3 , pp. 381-420
    • Douc, R.1    Matias, C.2
  • 27
    • 21244500381 scopus 로고    scopus 로고
    • Asymptotic properties of the maximum likelihood estimator in autoregressive models with Markov regime
    • R. Douc, E. Moulines, and T. Ryden Asymptotic properties of the maximum likelihood estimator in autoregressive models with Markov regime Ann. Statist. 32 5 2004 2254 2304
    • (2004) Ann. Statist. , vol.32 , Issue.5 , pp. 2254-2304
    • Douc, R.1    Moulines, E.2    Ryden, T.3
  • 29
    • 0002241694 scopus 로고
    • The SEM algorithm: A probabilistic teacher algorithm derived from the em algorithm for the mixture problem
    • G. Celeux, and J. Diebolt The SEM algorithm: a probabilistic teacher algorithm derived from the EM algorithm for the mixture problem Comput. Statist. Quater. 2 1985 73 82
    • (1985) Comput. Statist. Quater. , vol.2 , pp. 73-82
    • Celeux, G.1    Diebolt, J.2
  • 30
    • 0004020258 scopus 로고    scopus 로고
    • Tools for Statistical Inference: Methods for the exploration of posterior distributions and likelihood functions, third ed
    • Springer New-York
    • M.A. Tanner Tools for Statistical Inference: Methods for the exploration of posterior distributions and likelihood functions, third ed.,. Springer series in Statistics 1996 Springer New-York
    • (1996) Springer Series in Statistics
    • Tanner, M.A.1
  • 34
    • 0038030120 scopus 로고    scopus 로고
    • Sur le choix de méthode de segmentation statistique d'images
    • F. Salzenstein, and W. Pieczynski Sur le choix de méthode de segmentation statistique d'images Traitement du Signal 15 2 1998 119 128
    • (1998) Traitement du Signal , vol.15 , Issue.2 , pp. 119-128
    • Salzenstein, F.1    Pieczynski, W.2
  • 35
    • 27744578827 scopus 로고    scopus 로고
    • Construction of stationary Time series with application to volatility models
    • November
    • M. Pitt, S. Walker, Construction of stationary Time series with application to volatility models, Working Paper, November 1999.
    • (1999) Working Paper
    • Pitt, M.1    Walker, S.2
  • 36
    • 0036840430 scopus 로고    scopus 로고
    • Parameter estimation for hidden Markov chains
    • 1 November
    • G.E.B. Archer, and D.M. Titterington Parameter estimation for hidden Markov chains J. Statist. Plann. Inference 108 1-2 1 November 2002 365 390
    • (2002) J. Statist. Plann. Inference , vol.108 , Issue.1-2 , pp. 365-390
    • Archer, G.E.B.1    Titterington, D.M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.